超方形

✍ dations ◷ 2025-12-05 23:57:11 #超方形
在几何学中,超方形(英语:Hypercube),又称立方形、正测形(Measure Polytope)是指正方形和立方体的n维类比(对于正方形,n=2,对于立方体,n=3)。它是一类封闭的、紧致的、凸的图形,它们的1维骨架(英语:skeleton (topology))是由一群在其所在空间对准每个维度整齐排列的等长的线段组成的,其中相对的线段互相平行,而相交于一点的线段则互相正交。在n维空间中单位超方形(棱长为1)的对角线长等于 n {displaystyle {sqrt {n}}} .一个n维的超方形又被叫做n-超方形。“正测形”(Measure Polytope)也是一个常用的名字,尤其是在H.S.M.考克斯特的文章中(这个词最先是由Elte,1912发明的),但它现在已被“超方形”和“立方形”代替了。(而然在日本,由“Measure Polytope”翻译过来的“正测形”仍在使用)超方形是一种特殊的超矩形(英语:Hyperrectangle)(也被叫做正交形)。一个单位超方形是棱长为1个单位长度的超方形。通常,一个角(或叫顶点)是2n个在Rn中的各坐标值等于0或1的点的超方形被特指为在这个坐标系下的基本单位超方形。这个过程可以被推进到任意维度。这个扫出体积的过程可以被数学形式化为闵可夫斯基和:d维超方形是d个互相垂直的单位长度线段的闵可夫斯基和,因此超方形是环带多面体的一个很好的例子。超方体的1阶骨架(英语:Skeleton (topology))是一个超方形图(英语:hypercube graph)。n维的单位超方形是所有由直角坐标系 ( ± 1 2 , ± 1 2 , ⋯ , ± 1 2 ) {displaystyle left(pm {frac {1}{2}},pm {frac {1}{2}},cdots ,pm {frac {1}{2}}right)} 的所有符号排列所对应的点组成的凸包。它的棱长为1,而它的n维超体积是1。一个n维超方形有时也被表示为直角坐标 ( ± 1 , ± 1 , ⋯ , ± 1 ) {displaystyle (pm 1,pm 1,cdots ,pm 1)} 的所有符号排列所对应的点组成的凸包。这顶点坐标写法因为简便而经常被使用。它的棱长是2,而n维超体积是2n。超方形家族是少有的几个在任何维度都出现的正多胞形家族之一。超方形家族是三个正多胞形家族之一,被考克斯特标记为γn。另外两个是超方形对偶正轴形家族,标记为βn,以及正单纯形家族,标记为αn。例外,还有第四个不由凸正多胞形而是正无穷胞形,即超空间密铺组成的家族超方形堆砌家族,标记为δn,它们是超方形的超空间密铺。另外一个与超方形相关的由一系列半正多胞形(英语:Uniform polytope)组成的半正家族是半超方形家族,它们可由交错地删除对应维度超方形的顶点并在切口上添加新的正单纯形面来构造,标记为hγn。任何一个n-超方体(n>0)都是由低维的超方形元素组成的:它的(n-1)维表面(“维面”)是(n-1)维的超方形,它的(n-2)维边缘(“维脊”)是(n-2)维的超方形,它的(n-3)维元素(“维顶”)是(n-3)维的超方形…… n维的超方形有2n个维面(一维线段有两个端点;二维正方形有4条边或叫棱;三维立方体有6个面;四维超正方体有8个胞……)和 2 n {displaystyle 2^{n}} 个顶点(例如,立方体有 2 3 {displaystyle 2^{3}} 个顶点)。一个简单的计算n-超方体"n-2"-面个数的公式是: 2 n 2 − 2 n {displaystyle 2n^{2}-2n}n-超方形表面上m维超方形(0≤m≤n)的个数是:例如,四维超正方体(n=4)包含了8个立方体(3-超方体)、24个正方形(2-超方体)、32个线段(1-超方体)和16个点(0-超方体)。这个特性能够用组合学来证明。 2 n {displaystyle 2^{n}} 个顶点中的每一个都决定了n-超方体的一个 m {displaystyle m} 维表面。我们有 ( n m ) {displaystyle {begin{smallmatrix}{n choose m}end{smallmatrix}}} 种方法来选择哪些线段(“边”)决定了这表面所在的空间。但是因为每个表面都有 2 m {displaystyle 2^{m}} 个顶点,所以每个表面都被算了 2 m {displaystyle 2^{m}} 次,因此我们需要将结果再除以这个数。由此我们得到了上述性质。这个结果也能被递推关系式产生出来。例如,将二维空间中的正方形向三维空间延伸,在4个顶点处延伸出4条棱,最后加上第二个正方形来形成一个立方体,我们能算出总共有 E 1 , 3 {displaystyle E_{1,3}!} = 12 条棱。-​-​{}​{4,3}​{4,3,3}​{4,3,3,3}​{4,3,3,3,3}​{4,3,3,3,3,3}​{4,3,3,3,3,3,3}​{4,3,3,3,3,3,3,3}​{4,3,3,3,3,3,3,3,3}​{4,3,3,3,3,3,3,3,3,3}​一个n维超正方体能通过一个扭曲正交投影(英语:Petrie_polygon#The_hypercube_and_orthoplex_families)投影到2n边形中,这里展示出了从线段到十三维超正方体的13个超方形。n-超方体的棱的图像等距同构于(n-1)-单纯形的表面框架(英语:Convex polytope#The_face_lattice)的哈斯图。这种特殊关系可以通过以适当的角度看n-超方体使得相对的两个顶点处在图像的两个顶点,对应于(n-1)-单纯形自己和空集元素。每一个与最上方的顶点相连的顶点唯一的映射到(n-1)-单纯形的维面,再与之相连的顶点映射到单纯形的维脊,如此等等,并且与最下方的顶点相连的顶点映射到单纯形的棱。这个特殊关系可以被用来高效地产生(n-1)-单纯形的表面框架,毕竟可用于计算所有多胞形表面框架的一般方法在计算上比较困难。

相关

  • 风茄根毒茄参(学名:Mandragora officinarum),《圣经》中译作风茄,也叫曼德拉草,是茄科茄参属多年生草本植物。,其根部外型类似人的样子。长期用于巫术仪式,包括今天的威卡教。其根部分叉并
  • 奥斯卡·扎里斯基奥斯卡·扎里斯基(英文:Oscar Zariski,原名Ascher Zaritsky,1899年4月24日-1986年7月4日)是犹太裔美国籍数学家,出生于沙俄科布林(英文Kobrin,俄文Ко́брын,今属白俄罗斯),任美国
  • 高压灭菌器高压釜(英语:Autoclave,亦称为高壓滅菌釜、高压灭菌器、加压釜或加压灭菌器)是用水蒸汽的高温高压对物品进行灭菌处理的装备。通常的处理条件是在高压饱和蒸汽121摄氏度下处理15
  • 黄 如黄如(1969年11月-),生于江苏南京,籍贯福建南安,中国微电子器件专家,北京大学教授,中国科学院院士。1969年生于江苏南京,籍贯福建南安,1991年毕业于东南大学电子工程系,1994年获得东南大
  • 科学园区台湾有许多科学园区,其中新竹科学园区、中部科学园区及南部科学工业园区是由中华民国科技部所主管,另外在各地也有许多的科技园区、科学园区及软件园区。台湾设立科学园区的宗
  • 553年
  • 君王君主是指从一个家庭或家族中挑选成员来任职的国家元首或政权领袖。其职位之传承以直系血亲世袭为主,也可采选举或禅让方式产生;其中实行世袭制度者若无直系血亲之继承人,一般多
  • 洛雷斯坦洛雷斯坦省(波斯语:لرستان)是伊朗三十一个省份之一。面积28,559平方公里,在所有省份中排行第十四。人口约1,739,600(2006年数据);首府位于霍拉马巴德市。洛雷斯坦省位于伊
  • 昭平昭平县(邮政式拼音:Chaoping)在中国广西壮族自治区东部,是贺州市所辖的一个县。面积3273平方公里,2006年人口为41万。宋太祖开宝五年(972年)置龙平县,属昭州;宣和六年(1124年)宋徽宗改
  • 国际医疗科学期刊国际医疗科学期刊(International Journal of Medical Sciences;简称 IJMS)为一分由爱维史普林国际出版公司(Ivyspring International Publisher)所发行的开放获取医学期刊。