静磁学

✍ dations ◷ 2025-06-07 10:06:31 #静磁学
静磁学(Magnetostatics)是电磁学的分支,专门研究电流稳定(不随时间变化)的系统内磁场。在静电学中,电荷是稳定不变的;在这里,电流是稳定不变的。磁化强度不需要是静态的;静磁学的方程可以用于预测在纳秒或更小时间尺度内发生的快速磁性交换事件。 事实上即使电流不是静态,只要电流交替不迅速,静磁学是一个良好的近似。静磁学广泛应用于微磁学,例如磁记录设备的模型。起自麦克斯韦方程组,并做如下简化:静磁学方程,以微分形式与积分形式,分别展示于以下表格:其中, D {displaystyle mathbf {D} } 是电势移, B {displaystyle mathbf {B} } 是磁感应强度, E {displaystyle mathbf {E} } 是电场, H {displaystyle mathbf {H} } 是磁场强度, J f {displaystyle mathbf {J} _{f}} 是自由电流密度, S {displaystyle mathbb {S} } 是面积分的运算曲面, C {displaystyle mathbb {C} } 是路径积分的闭合路径, d a {displaystyle mathrm {d} mathbf {a} } 是微小面元素矢量, d ℓ {displaystyle mathrm {d} {boldsymbol {ell }}} 是微小线元素矢量, I f {displaystyle I_{f}} 是穿过闭合路径 C {displaystyle mathbb {C} } 所包围的曲面的自由电流。从比较上述方程与全版麦克斯韦方程组,注意到删除的项目的重要性,可以估算静磁近似方法的品质和误差。特别重要的是比较麦克斯韦-安培方程的自由电流密度项目 J f {displaystyle mathbf {J} _{f}} 与位移电流密度项目 J D = ∂ D ∂ t {displaystyle mathbf {J} _{D}={frac {partial mathbf {D} }{partial t}}} 。假若 J f {displaystyle mathbf {J} _{f}} 超大于位移电流密度 J D {displaystyle mathbf {J} _{D}} ,则可以忽略位移电流密度,而不会损失准确度。假设已知系统内所有的电流,那么,应用毕奥-萨伐尔定律,可以得到磁场:其中, r {displaystyle mathbf {r} } 是检验位置, r ′ {displaystyle mathbf {r} '} 是源头位置, μ 0 {displaystyle mu _{0}} 是磁常数, I {displaystyle I} 是源头电流, d ℓ ′ {displaystyle d{boldsymbol {ell }}'} 源头电流的微小路径元素。毕奥-萨伐尔方程适用于当介质是真空、空气或相对磁导率为1的类似物质。这包括了空心感应器和空心变压器。使用这方程,对于一个较复杂的线圈几何,可以分成几个部分积分,或者,对于很困难的几何形状,可以使用数值积分。由于这方程主要是用来解析线性问题,完整结果会是每一个部分的积分的总和。假若磁心(magnetic core)是一种高磁导率的磁性物质,而且空气间隙很小,则采用磁路方法比较有用。假若,与磁路相比,空气间隙很大,则边缘磁场的贡献会变得很重要。对于这类案例,通常必须使用有限元方法。对于铁磁性、亚铁磁性或顺磁性物质,它们的磁化强度主要是由电子自旋贡献出的。这些物质的磁场关系式必需显性地将磁化强度 M {displaystyle mathbf {M} } 纳入考量:假设电流为零,则安培定律变为这方程的一般解为其中, Φ H {displaystyle Phi _{H}} 是磁标势。将这解答式代入高斯磁定律,则可得到所以,磁化强度的散度 ∇ ⋅ M {displaystyle nabla cdot mathbf {M} } 扮演的角色类似于静电学里的电荷。注意到在这里,静磁状态是一种误称,因为静磁方程可以应用于快速的磁矩翻转(magnetization reversal)事件,即磁化强度会在纳秒内自我快速翻转方向的事件。

相关

  • 新霉素新霉素(neomycin)是一种氨基糖苷类抗生素,1949年微生物学家Selman Waksman和他的学生Hubert Lechevalier在弗氏链霉菌(Streptomyces fradiae)中分离获得。新霉素大多用于局部给药
  • 根肿黑粉菌门根肿黑粉菌属 Entorrhiza Talbotiomyces根肿黑粉菌纲(学名:Entorrhizomycetes)是担子菌门黑粉菌亚门下的一个纲。该纲仅含一个目(根肿黑粉菌目,Entorrhizales),该目下也仅含一个科(
  • 银耳目见内文银耳目(学名:Tremellales),是真菌下属担子菌门银耳纲的一目。大部分腐生于木材,少数寄生于其他真菌。主要生长在热带、亚热带地区。担子具直或斜的隔膜,
  • 超大陆超大陆(英语:supercontinent),一般定义为拥有一个以上陆核(continental core)或克拉通的大陆。以下为地质年代中曾出现与可能形成的超大陆,依照时间顺序排列:
  • 还原还原是一种化工单元过程。在化学反应中,还原反应是氧化反应的逆过程,即是得到电子的过程,因为有一方失去电子,就会有另一方得到电子。因此,还原反应经常和氧化反应合在一起,被称为
  • 心理疾病列表根据美国《精神疾病诊断与统计手册》第四版,美国精神医学学会对现有精神疾病进行分类,其包括四百种疾病。另外,联合国世界卫生组织的《国际疾病与相关健康问题统计分类》也被广
  • 毛细管毛细现象(又称毛细管作用)是指液体在细管状物体内侧,由液体与物体之间的附着力和因内聚力而产生的表面张力组合而成,令液体在不需施加外力的情况下,流向细管状物体的现象,该现象甚
  • 送气与不送气送气(Aspiration),语音学概念,指某些阻碍音在除阻时所伴随的强烈的空气喷吐。为感知送气与不送气音之间的差别,试将一只手或点燃的蜡烛置于口前,朗声说“滩”(/tʰan/)、“单”(/t
  • 汉文教育用基础汉字汉文教育用基础汉字是韩国教育中规定的标准汉字,皆为与繁体字大致相同的韩文汉字。于1972年8月16日首次发表,2000年12月30日重定修订并发表,数量约1800字,在中高等院校进行普及
  • 波尔查诺博尔扎诺(意大利语:Bolzano,,德语:Bozen,博岑,,当地方言:,拉登语:Bulsan,,拉丁语:Bauzanum)是意大利北部上阿迪杰的省会,靠近奥地利边境及威尼斯西北偏北。波尔扎诺自治省的省政府和省议会位