首页 >
哥德尔完备性定理
✍ dations ◷ 2024-12-22 20:08:02 #哥德尔完备性定理
哥德尔完备性定理是数理逻辑中重要的定理,在1929年由库尔特·哥德尔首先证明。它的最熟知的形式声称在一阶谓词演算中所有逻辑上有效的公式都是可以证明的。上述词语“可证明的”意味着有着这个公式的形式演绎。这种形式演绎是步骤的有限列表,其中每个步骤要么涉及公理要么通过基本推理规则从前面的步骤获得。给定这样一种演绎,它的每个步骤的正确性可以在算法上检验(比如通过计算机或手工)。如果一个公式在这个公式的语言的所有模型中都为真,它就被称为“逻辑上有效”的。为了形式的陈述哥德尔完备性定理,你必须定义这个上下文中词语“模型”的意义。这是模型论的基本定义。在另一个方向上,哥德尔完备性定理声称一阶谓词演算的推理规则是“完备的”,在不需要额外的推理规则来证明所有逻辑上有效的公式的意义上。完备性的逆命题是“可靠性”。一阶谓词演算的实情是可靠的,就是说,只有逻辑上有效的陈述可以在一阶逻辑中证明,这是可靠性定理断言的。处理在不同的模型中什么为真的数理逻辑分支叫做模型论。研究在特定形式系统中什么为可以形式证明的分支叫做证明论。完备性定理建立了在这两个分支之间的基本联系。给出了在语义和语形之间的连接。但完备性定理不应当被误解为消除了在这两个概念之间的区别;事实上另一个著名的结果哥德尔不完备定理,证实了对“在数学中什么是形式证明可以完成的”有着固有的限制。不完备定理的名声与另一种意义的“完备”有关,参见模型论。更一般版本的哥德尔完备性定理成立。它声称对于任何一阶理论T和在这个理论中的任何句子S,有一个S的自T的形式演绎,当且仅当S被T的所有模型满足。这个更一般的定理被隐含使用,例如,在一个句子被证实可以用群论的公理证明的时候,通过考虑一个任意的群并证实这个句子被这个群所满足。完备性定理是一阶逻辑的中心性质,不在所有逻辑中成立。比如二阶逻辑就没有完备性定理。完备性定理等价于超滤子引理,它是弱形式的选择公理,在不带有选择公理的策梅洛-弗兰克尔集合论中有着等价的可证明性。对定理的最初证明的解释请参见哥德尔完备性定理的最初证明。在现代逻辑课本中,哥德尔完备性定理通常使用Leon Henkin的证明而不是哥德尔最初的证明。
相关
- 多细胞生物多细胞生物是指由多个、分化的细胞组成的生物体,其分化的细胞各有不同的、专门的功能。大多数可以使用肉眼看到的生物是多细胞生物。 所有多细胞生物都属于真核生物。多细胞
- 肺脏肺是很多进行空气呼吸的动物的呼吸系统中重要的一个器官,大部分四足类动物、一些鱼类和蜗牛都有肺。哺乳动物和其他身体结构较为复杂的动物则拥有两个肺,其位于胸腔中靠近脊柱
- 化学合成在化学中,化学合成是以得到一种或多种产物为目的而进行的一系列化学反应。合成通常表现为通过物理或化学方法操纵的一步或多部反应。在现代的实验室应用中,合成通常暗示整个过
- 呼吸道合胞体病毒人类呼吸道合胞病毒,又称呼吸道融合病毒,简称HRSV(Human Respiratory Syncytial Virus),为副黏液病毒科肺病毒属中型单链RNA病毒,分为A,B两型, A,B两型之主要差异在于病毒外膜表面
- 南亚南亚(英语:South Asia)是术语,以替换百年老词“印度次大陆”,这老词用来代表亚洲大陆的南部地区,主要是位于印度板块和向南投射到印度洋的地方。是亚洲的一个亚区(英语:subregion),泛
- 亚马逊亚马逊公司(英语:Amazon.com, Inc.)是一家总部位于美国西雅图的跨国电子商务企业,业务起始于线上书店,不久之后商品走向多元化。目前是全球最大的互联网线上零售商之一,也是美国《
- 钠硫电池钠硫电池是一种由液体钠(Na)和硫(S)组成的熔盐电池。这类电池拥有高能量密度、高充/放电效率(89-92%)和长寿命周期,亦由廉价的材料制造。由于本电池操作温度高达300至350°C,
- 维A酸维A酸(Tretinoin、ATRA),又称全反式维甲酸及视黄酸,分子式:C20H28O2,分子量300.44,CAS号302-79-4,熔点180℃。医学导航: 皮肤附件解剖/生理/发育病理/先天/肿瘤, 症状/齐名手术,
- 新型冠状病毒肺炎 (COVID-19)疫情重定向至:
- 上标上标,也叫上角标,是出现在一列正常字体文字的上边的数字、字母或其他符号,在其他字母或符号的左边或右边。上标具有多种用途,常用于公式、数学式或化学复合物及同位素。也能用于