首页 >
哥德尔完备性定理
✍ dations ◷ 2025-06-06 15:31:03 #哥德尔完备性定理
哥德尔完备性定理是数理逻辑中重要的定理,在1929年由库尔特·哥德尔首先证明。它的最熟知的形式声称在一阶谓词演算中所有逻辑上有效的公式都是可以证明的。上述词语“可证明的”意味着有着这个公式的形式演绎。这种形式演绎是步骤的有限列表,其中每个步骤要么涉及公理要么通过基本推理规则从前面的步骤获得。给定这样一种演绎,它的每个步骤的正确性可以在算法上检验(比如通过计算机或手工)。如果一个公式在这个公式的语言的所有模型中都为真,它就被称为“逻辑上有效”的。为了形式的陈述哥德尔完备性定理,你必须定义这个上下文中词语“模型”的意义。这是模型论的基本定义。在另一个方向上,哥德尔完备性定理声称一阶谓词演算的推理规则是“完备的”,在不需要额外的推理规则来证明所有逻辑上有效的公式的意义上。完备性的逆命题是“可靠性”。一阶谓词演算的实情是可靠的,就是说,只有逻辑上有效的陈述可以在一阶逻辑中证明,这是可靠性定理断言的。处理在不同的模型中什么为真的数理逻辑分支叫做模型论。研究在特定形式系统中什么为可以形式证明的分支叫做证明论。完备性定理建立了在这两个分支之间的基本联系。给出了在语义和语形之间的连接。但完备性定理不应当被误解为消除了在这两个概念之间的区别;事实上另一个著名的结果哥德尔不完备定理,证实了对“在数学中什么是形式证明可以完成的”有着固有的限制。不完备定理的名声与另一种意义的“完备”有关,参见模型论。更一般版本的哥德尔完备性定理成立。它声称对于任何一阶理论T和在这个理论中的任何句子S,有一个S的自T的形式演绎,当且仅当S被T的所有模型满足。这个更一般的定理被隐含使用,例如,在一个句子被证实可以用群论的公理证明的时候,通过考虑一个任意的群并证实这个句子被这个群所满足。完备性定理是一阶逻辑的中心性质,不在所有逻辑中成立。比如二阶逻辑就没有完备性定理。完备性定理等价于超滤子引理,它是弱形式的选择公理,在不带有选择公理的策梅洛-弗兰克尔集合论中有着等价的可证明性。对定理的最初证明的解释请参见哥德尔完备性定理的最初证明。在现代逻辑课本中,哥德尔完备性定理通常使用Leon Henkin的证明而不是哥德尔最初的证明。
相关
- 子囊果子囊果(ascocarp, ascoma,複數為ascomata)是子囊菌门真菌的子实体,由许多菌丝紧密交织组成。子囊果内可能含有上百万个子囊,每个子囊内均可产生八枚子囊孢子。子囊果的形状多为盘
- 对症治疗对症治疗(symptomatic treatment)即是只运用药物改善疾病症状,但不能消除病因的治疗,也称治标。如用解热药(英语:Antipyretic)可使发热病人的体温降低,但并不能消除病因。一般对于病
- UniProtUniProt(联合的蛋白)是一个全面的,高质量的,免费使用的蛋白质序列与功能信息数据库,许多内容来自基因组计划,它还包含了大量来自研究文献的关于蛋白的生物学功能信息。UniProt共同
- 食品技术食品技术,是食品生产、运输、保鲜、包装等一系列技术的总称。运用食品技术,可以提高食物产量,增进食物质量和口感,延长其保存时间。
- 肥力土壤肥力(英语:Soil fertility)是指土壤支持农作物生长的能力,即:为农作物提供生长的土地,并使得土地资源可持续使用,产出高质量的作物。土壤肥力高的土地需要具有以下两个特征:
- 锰4s2 3d52, 8, 13, 2蒸气压第一:717.3 kJ·mol−1 第二:1509.0 kJ·mol−1 第三:3248 kJ·mol−1 (主条目:锰的同位素锰是原子序为25的化学元素,其元素符号为Mn。锰不会以元素
- 新政罗斯福新政(The New Deal)是指1933年富兰克林·罗斯福(小罗斯福)就任美国总统后所实行的一系列经济政策,其核心是三个R:救济(Relief)、复兴(Recovery)和改革(Reform),因此有时亦称三R新政
- 杜克大学杜克大学(英语:Duke University)是一所位于美国北卡罗来纳州达勒姆的一所私立男女合校研究型大学。杜克大学为美国最顶尖的学府之一,有“南方哈佛”之称(盖因在亚特兰大的埃默里
- 频尿症频尿症(英文:Frequent urination)。是指一个人在特定时间内的排尿次数比正常人高。一般正常的成年人,一天排尿次数大约5至7次,夜间0至1次,女性通常会较少。因此排尿10次以上一般都
- 第三人称人称是与语言中的行为动作相关的话语角色。“妈妈喂宝宝吃饭”和“我喂你吃饭”,意思可能相同,但前者是用有词汇意义的名词来表示与“喂”相关的人的具体身份,后者才是用功能性