首页 >
实际气体状态方程
✍ dations ◷ 2025-09-02 13:00:40 #实际气体状态方程
范德华方程(van der Waals equation)(一译范德瓦耳斯方程),简称范氏方程,是荷兰物理学家范德华于1873年提出的一种实际气体状态方程。范氏方程是对理想气体状态方程的一种改进,特点在于将被理想气体模型所忽略的的气体分子自身大小和分子之间的相互作用力考虑进来,以便更好地描述气体的宏观物理性质。范德华方程具体形式为:式中更常用的形式为:在第二个方程里下表列出了部分气体的a,b 的值在上述方程中必须严格区分总体平均性质和单个分子的性质。譬如,第一个方程中的
v
{displaystyle v}
是每个分子平均占有空间的大小(可以理解成分子平均“势力范围”的大小),而
b
′
{displaystyle b'}
则为单个分子本身“包含”的体积(若为单原子分子如稀有气体,
b
′
{displaystyle b'}
就是原子半径内包含的体积)。范氏方程对气-液临界温度以上流体性质的描写优于理想气体方程。对温度稍低于临界温度的液体和低压气体也有较合理的描述。但是,当描述对象处于状态参量空间(P,V,T)中气液相变区(即正在发生气液转变)时,对于固定的温度,气相的压强恒为所在温度下的饱和蒸气压,即不再随体积
V
{displaystyle V}
(严格地说应该是单位质量气体占用的体积,即比容)变化而变化,所以这种情况下范氏方程不再适用。下面以理想气体状态方程为基础,推导范氏方程。若把气体视为由体积无限小、相互之间无作用力的分子组成,这种模型便是理想气体模型,与其相对应的状态方程是:若抛弃前一个的假设,把组成气体的分子视为有一定大小的刚性球(其半径称为范德华半径),用
b
{displaystyle b}
表示这些“球”的体积,上面的方程便改写为:在这里,每个分子的“占有体积”
v
{displaystyle v}
被所谓“排斥体积”
v
−
b
{displaystyle v-b}
代替,反映了分子在空间中不能重叠。若气体被压缩至体积接近分子体积之和(即分子间空隙
v
−
b
{displaystyle v-b}
趋向于0),那么其压强将趋于无穷大。下一步,我们考虑原子对之间的引力。引力的存在会使分子的平均亥姆霍兹自由能下降,减少量正比于流体的密度。但压强的大小满足热力学关系式中A* 为每个分子的亥姆霍兹自由能。由此得到,引力使压强减小的量正比于
1
v
2
{displaystyle {frac {1}{v^{2}}}}
。记该比例常数为
a
{displaystyle a}
,可得这便是范氏方程。在气体压强不太高的情况下,以下事实成立:所以此时理想气体方程是范氏方程(也是对实际气体行为的)的一个良好近似。随着气体压力的增加,范氏方程和理想气体方程结果的差别会变得十分明显(左图为
CO
2
{displaystyle {ce {CO2}}}
分别用理想气体方程和范德华方程模拟的p-V等温线,温度70 °C):范氏方程适用于气体的液化过程。气体液化可能发生的最高温度称为临界温度,用
T
C
{displaystyle T_{C}}
表示:右图所示为用范氏方程模拟的
CO
2
{displaystyle {ce {CO2}}}
在不同温度下的p-V 等温线,从中可以明显看出范氏方程对液化过程的模拟(注意:若用理想气体状态方程作上述模拟,得到的只是一系列双曲线,因为在等温条件下理想气体状态方程就退化为玻意耳-马略特定律——pV=常数)。
CO
2
{displaystyle {ce {CO2}}}
气体的临界温度为
T
C
=
31
{displaystyle T_{C}=31}
°C
=
304
{displaystyle =304}
K。气体的临界状态参量
V
C
{displaystyle V_{C}}
、
p
C
{displaystyle p_{C}}
、
T
C
{displaystyle T_{C}}
和范德华常数
a
{displaystyle a}
、
b
{displaystyle b}
之间存在下列数学关系:我们可以利用这些关系通过测出气体的
T
C
{displaystyle T_{C}}
和对应的
p
C
{displaystyle p_{C}}
来得到
a
{displaystyle a}
和
b
{displaystyle b}
的值(由于测量上的困难,一般不使用
V
C
{displaystyle V_{C}}
)。下面,我们不再考虑
v
=
V
N
{displaystyle v={frac {V}{N}}}
(
N
{displaystyle N}
为系统中的分子数),改为考虑总体体积
V
{displaystyle V}
。状态方程并不能告诉我们系统的所有热力学参量。我们可以照搬上面推导范氏方程的思路,从理想气体的亥姆霍兹自由能表达式出发,推得下面的结论:式中
A
{displaystyle A}
为亥姆霍兹自由能,
c
^
v
{displaystyle {hat {c}}_{v}}
是无量纲的定容热容,
Φ
{displaystyle Phi }
是待定的熵常数。上述方程将
A
{displaystyle A}
用它的自然变量
V
{displaystyle V}
和
T
{displaystyle T}
表示,所以系统的所有热力学信息已全部知道。其力学状态方程就是前面导出的范氏方程系统的熵(
S
{displaystyle S}
)由下式决定综合
A
{displaystyle A}
和
S
{displaystyle S}
的表达式,可由定义得到系统内能其他热力学势和化学势也可用类似的方程给出,但任何势函数若要用压强
P
{displaystyle P}
表示都需要求解一个三阶多项式,使结果的形式变得很繁杂。所以,将焓和吉布斯能用它们相应的自然变量表示的结果都是复杂的(因为
P
{displaystyle P}
是它们的自然变量之一)。虽然在一般形式的范氏方程中,常数
a
{displaystyle a}
和
b
{displaystyle b}
因气体/流体种类而异,但我们可以通过改变方程的形式,得到一种适用于所有气体/流体的普适形式。按照下面的方式定义约减变量(亦称折合变量,就是把变量转换成其无量纲形式),其中下标
R
{displaystyle R}
表示约减变量,下标
C
{displaystyle C}
表示原变量的临界值:式中
p
C
=
a
27
b
2
{displaystyle p_{C}={frac {a}{27b^{2}}}}
,
v
C
=
3
b
{displaystyle displaystyle {v_{C}=3b}}
,
k
T
C
=
8
a
27
b
{displaystyle kT_{C}={frac {8a}{27b}}}
。用约减变量代替原变量,范氏方程形式变为这就是范氏方程的不变形式,即这一形式不会因应用流体种类改变而改变。上述方程的不变性质亦称对应状态原理。在流体力学中,范氏方程可以作为可压缩流体(如液态高分子材料)的PVT状态方程。这种情况下,由于比容
V
{displaystyle V}
变化不大,可将方程简化为:(
p
+
A
)
(
V
−
B
)
=
C
T
{displaystyle (p+A)(V-B)=CT,}
,其中
p
{displaystyle p}
为压强,
V
{displaystyle V}
为比容,
T
{displaystyle T}
为温度,
A
{displaystyle A}
、
B
{displaystyle B}
、
C
{displaystyle C}
均为与对象相关的参数。
相关
- 血液血液(英语:blood)是在动物的循环系统、心脏和血管腔内循环流动的一种组织,可以将氧气及营养素送到各器官,并将细胞的代谢废弃物带离细胞。血液组织是结缔组织的一种,由血浆和血细
- 麹菌See List of Aspergillus species麹菌属(Aspergillus)是一个由几百种多细胞霉菌菌种所组成的菌属,在许多气候条件下皆可发现它们的踪影。麹菌属于1729年被皮耶尔·安东尼奥·米
- 扣带回扣带回是位于大脑内侧的一个解剖结构。扣带回将胼胝体不完全地包裹;在上方,扣带回为扣带沟所限。扣带回是脑的边缘系统的一部分。其功能牵涉情感、学习和记忆。扣带回的皮层称
- 面心立方堆积立方晶系,也叫等轴晶系,它有4个三重对称轴以及3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴。其中的3个互相垂直的4次对称轴或者3个相互垂直的二重对称轴是晶体结晶轴
- 酿造醋酿造醋是以谷类等天然原料为主,再加上食盐、谷皮等发酵而成的食醋。醋一般按造制作方式可分成三种,包括酿造醋、合成醋、加工醋,其中以酿造醋品质最好,多用于直接烹饪或凉拌之用
- 纽约书评(2011)《纽约书评》(The New York Review of Books,缩写为NYRB)是一本在美国纽约市发行的半月刊(确切地说是每年二十期,学期段每月两期,寒暑假每月一期,显然是为了配合高校师生的生
- 粤菜粤菜,是中国八大菜系之一,也是四大中国菜系,亦称广东菜、广府菜,是指广府民系的代表性菜肴。值得注意的是,虽然客家民系和潮汕民系也生活在广东省境内,但客家菜和潮州菜(潮汕菜)均不
- 继电器继电器(Relay),也称电驿,是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动
- 电视台电视台(英语:TV station或television station)是制作电视节目并透过电视或网络向大众播放的媒体机构,也有些是由国家或商业机构创办的媒体运作组织,传播视频和音频同步的资讯信息
- 热动说热动说是一种解释热现象的学说,由伦福德伯爵于1798年引入,并由法国物理学家尼古拉·卡诺进一步发展。这一学说指出热量与机械功在改变内能方面是等价的。这一学说的验证与热功