对合

✍ dations ◷ 2025-12-10 15:51:19 #函数,抽象代数

在数学中,对合(英语:involution)或对合函数,是逆函数等于自身的函数,就是说

对合是双射。

恒等映射是一个对合的平凡例子。数学中更常见的有趣对合例子包括算术中的乘以 −1 和取倒数,集合论中的补集,和复共轭。

其他例子包括圆反演、ROT13变换,和 Beaufort 多字母表密码.

三维欧几里得空间中对合的简单例子是对一个平面的反射。做两次反射就回到了起点。

这个变换是仿射对合的特殊情况。

在线性代数中,对合是线性算子 使得 T 2 = I {\displaystyle T^{2}=I} ,使得 ≠ 且2 = ,其中是单位元。这个定义原来与以上的定义没有任何不同,因为群的元素总是从一个集合到它本身的双射,也就是说,“群”的意思是“置换群”。到了19世纪末,群的定义变得更加广泛,相应地,对合也变得更加广泛。由一个对合通过复合函数生成的双射群,与循环群2同构。

一个置换是对合,当且仅当它可以写成一个或多个不重合的对换的乘积。

群的对合对群的结构有很大影响。对合的研究在有限单群分类中是十分有用的。

在布尔代数中补运算是对合。因此在经典逻辑中的否定满足“双重否定律”: ¬¬ 等价于 。

一般在非经典逻辑中,满足双重否定律的的否定叫做对合性的。在代数语义中,这样的否定被实现为在逻辑真值的代数上对合。有对合性否定的逻辑的例子有 Kleene 和 Bochvar 的三值逻辑、Łukasiewicz 多值逻辑、模糊逻辑 IMTL 等。对合性否定有时作为额外的连结词而增加到有非对合性否定的逻辑中;比如形式模糊逻辑。

否定的对合性是逻辑和对应的代数簇的重要特征性质。例如,对合性否定从Heyting代数中特征化出了布尔代数。相应的,经典布尔逻辑可印发自直觉逻辑加上双重否定律。

在有 = 0, 1, 2, … 个元素的集合上对合的数目给出自递推关系:

这个序列的前几项是 1, 1, 2, 4, 10, 26, 76, 232 (OEIS中的数列A000085)。

相关

  • ProtegeProtégé,常简化拼写为“Protege”,是一个史丹佛大学开发的本体编辑和知识管理系统。开发语言采用Java,属于开放源码软件。由于其优秀的设计和众多的插件,Protégé已成为当前
  • 自由大宪章《大宪章》(拉丁语:Magna Carta,英语:The Great Charter),又称作《自由大宪章》(拉丁语:Magna Carta Libertatum;英语:The Great Charter of the Liberties)是英格兰国王约翰最初于1215
  • 腹腔动脉腹腔动脉(arteria coeliaca),又称腹腔动脉干(Truncus coeliacus),源自于腹主动脉(英语:abdominal aorta),水平长度约1.25 cm。在人体中,腹腔动脉会于第12节胸椎处由腹主动脉分支,为腹主
  • 狐(学名:Vulpes),常俗称狐狸,在动物分类学上,属于食肉目犬科,目前人工主要饲养的有银狐,为赤狐的一个亚种。狐狸繁殖率高,抗病力强,食性杂,好饲养。毛长,耳尖,腿相对较短,吻独狭长,似体型中
  • 卡斯特勒阿尔弗雷德·卡斯特勒(法语:Alfred Kastler,1902年5月3日法国盖布维莱尔 - 1984年1月7日),法国物理学家,1966年获诺贝尔物理学奖。1901年:伦琴 / 1902年:洛伦兹、塞曼 / 1903年:贝
  • 魏斯密斯山魏斯密斯山(德语:Weissmies,4,017米(13,179英尺))是瑞士本宁阿尔卑斯山脉在瓦莱州萨斯费附近的一座山。它是four-thousander(英语:four-thousander)地区最东部的山。魏斯密斯山主阿
  • Squarepusher汤姆·詹金森(1975年1月17日-,英语:Tom Jenkinson),绰号Squarepusher,英国电子音乐家。出生在英格兰切尔姆斯福德(Chelmsford)。作品受鼓打贝斯(drum 'n' bass)、酸性浩室舞曲(acid ho
  • 圣巴伦廷山圣巴伦廷山是智利的山峰,位于该国南部伊瓦涅斯将军艾森大区,属于安第斯山脉的一部分,海拔高度4,058米,山坡上有5道河川,其高度曾在1921年被估计为3,876米。
  • ONEONE或one可以指:
  • 波巴·费特之书《波巴·费特之书》(英语:)是一部美国太空歌剧网络电视剧,取材自乔治·卢卡斯的《星球大战》,与《星球大战》系列电影和电视剧处于同一架空世界和共同世界,并与《新共和国游骑兵》