傅里叶变换

✍ dations ◷ 2025-11-30 12:52:44 #数字信号处理,傅里叶变换,积分变换,酉算子

傅里叶变换(法语:Transformation de Fourier、英语:Fourier transform)是一种线性积分变换,用于信号在时域(或空域)和频域之间的变换,在物理学和工程学中有许多应用。因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。实际上傅里叶变换就像化学分析,确定物质的基本成分;信号来自自然界,也可对其进行分析,确定其基本成分。

经傅里叶变换生成的函数 f ^ {\displaystyle {\hat {f}}} 表示(以秒为单位),变换变量表示频率(以赫兹为单位)。在适当条件下, f ^ {\displaystyle {\hat {f}}} 或。

傅里叶变换源自对傅里叶级数的研究。在对傅里叶级数的研究中,复杂的周期函数可以用一系列简单的正弦、余弦波之和表示。傅里叶变换是对傅里叶级数的扩展,由它表示的函数的周期趋近于无穷。

英语:Fourier transform或法语:Transformation de Fourier中文较常用的翻译名称有傅里叶变换、傅里叶转换等。为方便起见,本文统一写作傅里叶变换。

傅里叶变换在医学、数据科学、物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、讯号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在讯号处理中,傅里叶变换的典型用途是将讯号分解成振幅分量和频率分量。

两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数 f ( x ) {\displaystyle f\left(x\right)} 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子 ( i ω ) k {\displaystyle (i\omega )^{k}} = 2其单位是弧度每秒。

应用ξ=ω/(2π)到上述公式会成为下面的形式:

根据这一形式,(傅里叶)逆变换变为:

若不按照本文中使用的,而像这样定义傅里叶变换,那它将不再是2(R)上的一个幺正变换 。另外这样的定义也使傅里叶变换与其逆变换显得不太对称。

另一个形式是把(2)均匀地分开给傅里叶变换和逆变换,即定义为:

根据这一形式,傅里叶变换是再次成为2(R)上的一个幺正变换。它也恢复了傅里叶变换和逆变换之间的对称。

所有三种形式的变化可以通过对正向和反向变换的复指数核取共轭来实现。核函数的符号必须是相反的。除此之外,选择是习惯问题。

如上所讨论的,一个随机变量的特征函数是相同的傅里叶变换斯蒂尔切斯其分布的测量,但在这种情况下它是典型采取不同的惯例为常数。通常情况下特征函数的定义 E ( e i t X ) = e i t x d μ X ( x ) {\displaystyle E(e^{it\cdot X})=\int e^{it\cdot x}d\mu _{X}(x)} 是实频率分量的振幅。

傅里叶分析最初是研究周期性现象,即傅里叶级数的,后来通过傅里叶变换将其推广到了非周期性现象。理解这种推广过程的一种方式是将非周期性现象视为周期性现象的一个特例,即其周期为无限长。

离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆转换。

为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数定义在点而非连续域内,且须满足有限性或周期性条件。这种情况下,使用离散傅里叶变换,将函数表示为下面的求和形式:

其中 X k {\displaystyle X_{k}} (), ()和(),它们的傅立叶变换分别表示为 f ^ {\displaystyle {\hat {f}}} 变量、、、、和为实数。对整个平面积分。

这两个函数都是高斯分布,而且可能不具有单位体积。

此圆有单位半径,如果把circ(t)认作阶梯函数u(1-t); Airy分布用J1(1阶第一类贝塞尔函数)表达。(Stein & Weiss 1971,Thm. IV.3.3)

相关

  • 互利共生互利共生(英语:Mutualism)是指在生物界中某两物种间的一种互相依赖、双方获利的共生关系。这些关系可以是长期的,包括物质接触或者生化联系。共生双方分开之后,一方或者双方将无
  • 阿德莱德大学阿德莱德大学(英语:University of Adelaide),在澳大利亚被归为六所砂岩学府(Sandstone universities)之一,世界著名高等学府,位于南澳大利亚州首府阿德莱德市中心。自1874年创校以来
  • 意大利国会意大利议会(意大利语:Parlamento Italiano)是意大利的最高立法机构。意大利议会为两院制,由参议院、众议院组成。两院职能相同、权力均等。参议院议员315人;众议院议员630人,合共9
  • 阿德莱德级巡防舰托德造船厂(英语:Todd Pacific Shipyards)西雅图分部澳洲:澳大利亚海洋工程联合公司(AMECON,今特尼克斯防务)维多利亚省威廉斯顿 (维多利亚州)分部4,500海里(8,300千米;5,200英里)Mk 1
  • 黄盖鹅膏蕈伞凸面子实层连生有毒黄盖鹅膏(学名:Amanita gemmata,英语:gemmed Amanita、jeweled deathcap、jonquil Amanita)是鹅膏菌科鹅膏菌属的蘑菇。其子实体部分拥有暗金色或暗黄色的
  • 水壶水壶是一种盛载水或其他饮料的便携式容器,有不同的材质可以使用,而保温瓶具有保温保冰功能。在陶器产生以前,古人盛水的器皿是动物皮囊,如羊皮、鹿皮等。后来才用瓦器、陶、瓷等
  • 托马斯·沃尔西托马斯·沃尔西(Thomas Wolsey,约1471年-1530年11月29日),英国政治家,亨利八世的重臣,曾任大法官、国王首席顾问;同时也是一位神职人员,历任林肯主教、约克总主教及枢机。托马斯·沃
  • 约阿希姆·高克约阿希姆·高克(德语:Joachim Gauck,1940年1月24日-),曾任德意志联邦共和国第11任总统,前路德派牧师,是德国首位无党籍总统。约阿希姆·高克于1940年1月24日在大德意志帝国罗斯托克
  • 缟獴Viverra mungo Gmelin, 1788缟獴(学名:Mungos mungo),又称非洲獴、斑纹灰沼狸、横斑獴,是缟獴属下两个物种的其中之一,主要分布在非洲中部和东部。成年的缟獴可长至0.3—0.4米,尾长
  • 各国出口额列表这是各国出口额列表,数据基于世界贸易组织的全球商品出口数据,采用FOB统计各国及地区货物出口额。