首页 >
负
✍ dations ◷ 2025-04-04 08:10:18 #负
负数,在数学上指小于0的实数,如−2、−3.2、−807.5等,与正数相对。和实数一样,负数也是一个不可数的无限集合。这个集合在数学上通常用粗体R−或
R
−
{displaystyle mathbb {R} ^{-}}
来表示。负数与0统称非正数。N
⊆
Z
⊆
Q
⊆
R
⊆
C
{displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数
R
+
{displaystyle mathbb {R} ^{+}}
自然数
N
{displaystyle mathbb {N} }
正整数
Z
+
{displaystyle mathbb {Z} ^{+}}
小数
有限小数
无限小数
循环小数
有理数
Q
{displaystyle mathbb {Q} }
代数数
A
{displaystyle mathbb {A} }
实数
R
{displaystyle mathbb {R} }
复数
C
{displaystyle mathbb {C} }
高斯整数
Z
[
i
]
{displaystyle mathbb {Z} }负数
R
−
{displaystyle mathbb {R} ^{-}}
整数
Z
{displaystyle mathbb {Z} }
负整数
Z
−
{displaystyle mathbb {Z} ^{-}}
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
I
{displaystyle mathbb {I} }
二次无理数
艾森斯坦整数
Z
[
ω
]
{displaystyle mathbb {Z} }二元数
四元数
H
{displaystyle mathbb {H} }
八元数
O
{displaystyle mathbb {O} }
十六元数
S
{displaystyle mathbb {S} }
超实数
∗
R
{displaystyle ^{*}mathbb {R} }
大实数
上超实数双曲复数
双复数
复四元数
共四元数(英语:Dual quaternion)
超复数
超数
超现实数质数
P
{displaystyle mathbb {P} }
可计算数
基数
阿列夫数
同余
整数数列
公称值规矩数
可定义数
序数
超限数
'"`UNIQ--templatestyles-00000015-QINU`"'
p进数
数学常数圆周率
π
=
3.141592653
…
{displaystyle pi =3.141592653dots }
自然对数的底
e
=
2.718281828
…
{displaystyle e=2.718281828dots }
虚数单位
i
=
−
1
{displaystyle i={sqrt {-1}}}
无穷大
∞
{displaystyle infty }负整数可以被认为是自然数的扩展,使得等式
x
−
y
=
z
{displaystyle x-y=z}
对任意
x
{displaystyle x}
和
y
{displaystyle y}
都有意义。相对而言,其他数的集合都是从自然数通过逐步扩展得到的。负数在表示小于 0 的值的时候非常有用。例如,在会计学上,它可以被用来表示负债,而且通常以红色表示(若不带负数符号则加上括号),所以又称“赤字”。自从公元前4世纪的汉代,中国数学家就已经了解负数和零的概念了。 公元1世纪的《九章算术》说“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”(这段话的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”)以上文字里的“无入”通常被数学历史家认为是零的概念。(全文见维基文库的《九章算术》)尽管中国古人首先发现并应用了负数,但却并没有从理性方面讨论负数存在的意义和本质,这可能是文化习惯导致的。对负数精确的定义,和其根本属性的讨论,是由近代西方数学家首先完成的。西方最早在数学上使用负数的文献纪录,是由古印度数学家婆罗摩笈多于公元628年完成的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》。它的出现是为了表示负资产或债务。在很大程度上,欧洲数学家直到17世纪才接受负数的概念。在实数上可以定义这样一个函数
sgn
(
x
)
{displaystyle operatorname {sgn}(x)}
,它对正数取值为 1,负数取值为 −1,0 取值为 0。这个函数通常被称为符号函数:当
x
{displaystyle x}
不为 0 时,则有:这里,
|
x
|
{displaystyle leftvert xrightvert }
为
x
{displaystyle x}
的绝对值,
H
(
x
)
{displaystyle H(x)}
为单位阶跃函数。请参见导数。加上一个负数相当于减去其相反数:一个较大的正数减去一个较小的正数将得到一个正数一个较小的正数减去一个较大的正数将得到一个负数:任意负数减去一个正数总得到一个负数:减去一个负数相当于加上相应的正数:一个负数和一个正数相乘得到一个负数:
(
−
2
)
×
3
=
−
6
{displaystyle (-2)times 3=-6}
。这里,乘法可以被看作是多次加法的重复:
(
−
2
)
×
3
=
(
−
2
)
+
(
−
2
)
+
(
−
2
)
=
−
6
{displaystyle (-2)times 3=(-2)+(-2)+(-2)=-6}
。两个负数相乘得到一个正数:
(
−
3
)
×
(
−
4
)
=
12
{displaystyle (-3)times (-4)=12}
。这里,乘法不能再被看作是多次加法的重复了,而是为了使乘法满足分配律:等式的左边为
0
×
(
−
4
)
=
0
{displaystyle 0times (-4)=0}
。等式的右边为
−
12
+
(
−
3
)
×
(
−
4
)
{displaystyle -12+(-3)times (-4)}
。为了使两边相等,必须要
(
−
3
)
×
(
−
4
)
=
12
{displaystyle (-3)times (-4)=12}
。除法和乘法类似。若被除数和除数有不同的符号,结果是一个负数:若被除数和除数有相同的符号(就算他们均为负),结果是一个正数:
相关
- 内外肋间肌肋间肌即连接相邻两肋骨骨弓的肌肉。在呼吸过程中,每对肋骨间的肋间肌收缩,使肋骨向外并向上摇动。肋间肌与横膈一起运作,以将空气吸入肺中。如果做激烈的运动,则颈部和腹部的肌
- 玉树县玉树市(藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomolangm
- 动力系统动力系统(dynamical system)是数学上的一个概念。动力系统是一种固定的规则,它描述一个给定空间(如某个物理系统的状态空间)中所有点随时间的变化情况。例如描述钟摆晃动、管道中
- 詹姆斯·克拉克·麦克斯韦詹姆斯·克拉克·麦克斯韦FRS FRSE(英语:James Clerk Maxwell,1831年6月13日-1879年11月5日),苏格兰数学物理学家。其最大功绩是提出了将电、磁、光统归为电磁场中现象的麦克斯韦
- 有袋目有袋上目(学名:Marsupialia)动物是雌性个体的腹部下长有育幼袋的哺乳类动物,如袋鼠、袋狼、树袋熊、负鼠、袋貂、袋狸等。现存物种如袋鼠、树袋熊主要分布于澳洲及附近岛屿,负鼠
- 荷兰省级政治荷兰政府与政治 系列条目荷兰省级政治是构成荷兰政治的网络之一,省份的地位仅次于中央政府,而省级政治由十二个省分主导。省级单位的官员主要有三种来源:第一种是女王专员,第二
- 中国皮影戏皮影戏,又称影子戏或灯影戏,是一种使用平面的、关节可动的、镂空的人形,并将其置于光源与半透明屏幕或布帘间,用以叙说故事及娱乐的传统表演艺术。在过去电影、电视等媒体尚未发
- 纸草纸草可能指以下条目:
- 前列腺痛前列腺痛是前列腺炎中常见类型之一。有如同没有致病生物体的慢性前列腺炎患者的全部自我症状。唯独前列腺痛是前列腺炎各类型中前列腺按出液在光学显微镜下,每高倍视野中白细
- 西澳凉流西澳洋流(英语:West Australian Current或Western Australian Current),是位于南冰洋及南印度洋表面的寒流,具季节性,于冬季较弱,夏季较强,而且受当地风势影响。西澳寒流位于澳大利