✍ dations ◷ 2025-12-01 07:39:37 #负
负数,在数学上指小于0的实数,如−2、−3.2、−807.5等,与正数相对。和实数一样,负数也是一个不可数的无限集合。这个集合在数学上通常用粗体R−或 R − {displaystyle mathbb {R} ^{-}} 来表示。负数与0统称非正数。N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数质数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }负整数可以被认为是自然数的扩展,使得等式 x − y = z {displaystyle x-y=z} 对任意 x {displaystyle x} 和 y {displaystyle y} 都有意义。相对而言,其他数的集合都是从自然数通过逐步扩展得到的。负数在表示小于 0 的值的时候非常有用。例如,在会计学上,它可以被用来表示负债,而且通常以红色表示(若不带负数符号则加上括号),所以又称“赤字”。自从公元前4世纪的汉代,中国数学家就已经了解负数和零的概念了。 公元1世纪的《九章算术》说“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”(这段话的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”)以上文字里的“无入”通常被数学历史家认为是零的概念。(全文见维基文库的《九章算术》)尽管中国古人首先发现并应用了负数,但却并没有从理性方面讨论负数存在的意义和本质,这可能是文化习惯导致的。对负数精确的定义,和其根本属性的讨论,是由近代西方数学家首先完成的。西方最早在数学上使用负数的文献纪录,是由古印度数学家婆罗摩笈多于公元628年完成的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》。它的出现是为了表示负资产或债务。在很大程度上,欧洲数学家直到17世纪才接受负数的概念。在实数上可以定义这样一个函数 sgn ⁡ ( x ) {displaystyle operatorname {sgn}(x)} ,它对正数取值为 1,负数取值为 −1,0 取值为 0。这个函数通常被称为符号函数:当 x {displaystyle x} 不为 0 时,则有:这里, | x | {displaystyle leftvert xrightvert } 为 x {displaystyle x} 的绝对值, H ( x ) {displaystyle H(x)} 为单位阶跃函数。请参见导数。加上一个负数相当于减去其相反数:一个较大的正数减去一个较小的正数将得到一个正数一个较小的正数减去一个较大的正数将得到一个负数:任意负数减去一个正数总得到一个负数:减去一个负数相当于加上相应的正数:一个负数和一个正数相乘得到一个负数: ( − 2 ) × 3 = − 6 {displaystyle (-2)times 3=-6} 。这里,乘法可以被看作是多次加法的重复: ( − 2 ) × 3 = ( − 2 ) + ( − 2 ) + ( − 2 ) = − 6 {displaystyle (-2)times 3=(-2)+(-2)+(-2)=-6} 。两个负数相乘得到一个正数: ( − 3 ) × ( − 4 ) = 12 {displaystyle (-3)times (-4)=12} 。这里,乘法不能再被看作是多次加法的重复了,而是为了使乘法满足分配律:等式的左边为 0 × ( − 4 ) = 0 {displaystyle 0times (-4)=0} 。等式的右边为 − 12 + ( − 3 ) × ( − 4 ) {displaystyle -12+(-3)times (-4)} 。为了使两边相等,必须要 ( − 3 ) × ( − 4 ) = 12 {displaystyle (-3)times (-4)=12} 。除法和乘法类似。若被除数和除数有不同的符号,结果是一个负数:若被除数和除数有相同的符号(就算他们均为负),结果是一个正数:

相关

  • 二顺反子病毒科Cripavirus Iflavirus二顺反子病毒科(学名:Dicistroviridae)是小核糖核酸目(英语:Picornavirales)(病毒)里面的一个科。二顺反子病毒科(Dicistroviridae)
  • 格言格言又称箴言,可以作为人们行为规范的言简意赅的语句,因其不仅凝聚古圣先贤的人生智慧,同时具备简练生动的表达方式。从句法结构角度说,格言是相对完整、相对独立的句子,可以独立
  • 负氧离子洞负氧离子洞(英语:oxyanion hole)能够稳定去质子化的氧或醇盐上的过渡态负电荷,其通常由骨架酰胺或带正电荷的残基组成。稳定过渡态会降低反应所需的活化能,从而促进催化作用。例
  • E编码E编号(英语:E number)是欧盟对其认可的食品添加物编号,在食物标签上常能看到。具有E编号的添加物代表已经由欧盟核可,能够使用在食物中。E编号的E表示欧盟。在英国和爱尔兰,E编号
  • 美苏关系美苏关系指美利坚合众国与苏维埃社会主义共和国联盟之间的关系,继承了俄罗斯帝国时代的俄美关系(1776-1917),早于苏联解体后的美俄关系。由于相互间的敌视政策,两国很晚才建立全
  • 轶事证据轶事证据(Anecdotal evidence)或传闻证据系指来自传闻、故事的证据。有些传闻往往细节详细、诩诩如生,让人印象深刻;有些案例则以新闻、八卦的形式被人一传再传,造成三人成虎,让人
  • Balenciaga巴黎世家(西班牙语:Balenciaga,西班牙语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000"
  • 脸部单侧或双侧麻痹贝尔氏麻痹症(Bell's palsy)是面部瘫痪之一种,由颅神经VII(面神经)的功能障碍引起,导致无力控制受影响一侧的面部肌肉。通常受影响一侧眼睛不能闭合。眼睛必须防止干燥,否则角膜可
  • 尸体农场尸体农场是一个研究在各种环境下人类尸体分解的露天场所。通过研究暴露在空气中的尸体,可以更好地了解尸体分解过程,从而可以推断人类遗体的死亡时间和状况。第一个尸体农场是
  • 绝缘质绝缘体(英语:Insulator),又称电介质或绝缘子,是一种阻碍电荷流动的材料。在绝缘体中,价带电子被紧密的束缚在其原子周围。这种材料在电气设备中用作绝缘体,或称起绝缘作用。其作用