首页 >
负
✍ dations ◷ 2025-04-26 12:30:43 #负
负数,在数学上指小于0的实数,如−2、−3.2、−807.5等,与正数相对。和实数一样,负数也是一个不可数的无限集合。这个集合在数学上通常用粗体R−或
R
−
{displaystyle mathbb {R} ^{-}}
来表示。负数与0统称非正数。N
⊆
Z
⊆
Q
⊆
R
⊆
C
{displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数
R
+
{displaystyle mathbb {R} ^{+}}
自然数
N
{displaystyle mathbb {N} }
正整数
Z
+
{displaystyle mathbb {Z} ^{+}}
小数
有限小数
无限小数
循环小数
有理数
Q
{displaystyle mathbb {Q} }
代数数
A
{displaystyle mathbb {A} }
实数
R
{displaystyle mathbb {R} }
复数
C
{displaystyle mathbb {C} }
高斯整数
Z
[
i
]
{displaystyle mathbb {Z} }负数
R
−
{displaystyle mathbb {R} ^{-}}
整数
Z
{displaystyle mathbb {Z} }
负整数
Z
−
{displaystyle mathbb {Z} ^{-}}
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
I
{displaystyle mathbb {I} }
二次无理数
艾森斯坦整数
Z
[
ω
]
{displaystyle mathbb {Z} }二元数
四元数
H
{displaystyle mathbb {H} }
八元数
O
{displaystyle mathbb {O} }
十六元数
S
{displaystyle mathbb {S} }
超实数
∗
R
{displaystyle ^{*}mathbb {R} }
大实数
上超实数双曲复数
双复数
复四元数
共四元数(英语:Dual quaternion)
超复数
超数
超现实数质数
P
{displaystyle mathbb {P} }
可计算数
基数
阿列夫数
同余
整数数列
公称值规矩数
可定义数
序数
超限数
'"`UNIQ--templatestyles-00000015-QINU`"'
p进数
数学常数圆周率
π
=
3.141592653
…
{displaystyle pi =3.141592653dots }
自然对数的底
e
=
2.718281828
…
{displaystyle e=2.718281828dots }
虚数单位
i
=
−
1
{displaystyle i={sqrt {-1}}}
无穷大
∞
{displaystyle infty }负整数可以被认为是自然数的扩展,使得等式
x
−
y
=
z
{displaystyle x-y=z}
对任意
x
{displaystyle x}
和
y
{displaystyle y}
都有意义。相对而言,其他数的集合都是从自然数通过逐步扩展得到的。负数在表示小于 0 的值的时候非常有用。例如,在会计学上,它可以被用来表示负债,而且通常以红色表示(若不带负数符号则加上括号),所以又称“赤字”。自从公元前4世纪的汉代,中国数学家就已经了解负数和零的概念了。 公元1世纪的《九章算术》说“正负术曰:同名相除,异名相益,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之。”(这段话的大意是“减法:遇到同符号数字应相减其数值,遇到异符号数字应相加其数值,零减正数的差是负数,零减负数的差是正数。”)以上文字里的“无入”通常被数学历史家认为是零的概念。(全文见维基文库的《九章算术》)尽管中国古人首先发现并应用了负数,但却并没有从理性方面讨论负数存在的意义和本质,这可能是文化习惯导致的。对负数精确的定义,和其根本属性的讨论,是由近代西方数学家首先完成的。西方最早在数学上使用负数的文献纪录,是由古印度数学家婆罗摩笈多于公元628年完成的《婆罗摩历算书(英语:Brāhmasphuṭasiddhānta)》。它的出现是为了表示负资产或债务。在很大程度上,欧洲数学家直到17世纪才接受负数的概念。在实数上可以定义这样一个函数
sgn
(
x
)
{displaystyle operatorname {sgn}(x)}
,它对正数取值为 1,负数取值为 −1,0 取值为 0。这个函数通常被称为符号函数:当
x
{displaystyle x}
不为 0 时,则有:这里,
|
x
|
{displaystyle leftvert xrightvert }
为
x
{displaystyle x}
的绝对值,
H
(
x
)
{displaystyle H(x)}
为单位阶跃函数。请参见导数。加上一个负数相当于减去其相反数:一个较大的正数减去一个较小的正数将得到一个正数一个较小的正数减去一个较大的正数将得到一个负数:任意负数减去一个正数总得到一个负数:减去一个负数相当于加上相应的正数:一个负数和一个正数相乘得到一个负数:
(
−
2
)
×
3
=
−
6
{displaystyle (-2)times 3=-6}
。这里,乘法可以被看作是多次加法的重复:
(
−
2
)
×
3
=
(
−
2
)
+
(
−
2
)
+
(
−
2
)
=
−
6
{displaystyle (-2)times 3=(-2)+(-2)+(-2)=-6}
。两个负数相乘得到一个正数:
(
−
3
)
×
(
−
4
)
=
12
{displaystyle (-3)times (-4)=12}
。这里,乘法不能再被看作是多次加法的重复了,而是为了使乘法满足分配律:等式的左边为
0
×
(
−
4
)
=
0
{displaystyle 0times (-4)=0}
。等式的右边为
−
12
+
(
−
3
)
×
(
−
4
)
{displaystyle -12+(-3)times (-4)}
。为了使两边相等,必须要
(
−
3
)
×
(
−
4
)
=
12
{displaystyle (-3)times (-4)=12}
。除法和乘法类似。若被除数和除数有不同的符号,结果是一个负数:若被除数和除数有相同的符号(就算他们均为负),结果是一个正数:
相关
- 腱腱(或称肌腱)是一坚韧的结缔组织带,通常将肌肉连接到骨骼,并可承受张力。腱类似韧带和筋膜,都是由胶原蛋白组成;不过,韧带是连接骨骼,而筋膜则连接肌肉。肌腱与肌肉一起作用产生动作
- 视网膜脱落视网膜脱落(英语:Retinal detachment)是因视网膜从下层支撑组织上剥离下来而导致的急性眼部疾病。症状包括飞蚊症的数量增加,闪光症(英语:photopsia),视野外部恶化,有点类似视野一部
- 超常现象超常现象(英语:Paranormal),又称灵异现象,是指与科学和常识相互矛盾的现象。因为超常现象无法用已存在的逻辑架构、或普遍被接受的现实知识来解释。这些真实性并未确定的现象,通常
- 等离子体等离子体物理学是研究等离子体性质的物理学分支。等离子体是物质的第四态,是由电子、离子等带电粒子及中性粒子组成的混合气体,宏观上表现出准中性,即正负离子的数目基本相等,整
- 莉泽·迈特纳莉泽·迈特纳(英语:Lise Meitner,1878年11月7日-1968年10月27日),奥地利-瑞典原子物理学家。她的众多成绩中最重要的是她第一个理论解释了奥托·哈恩1938年发现的核裂变。莉泽·迈
- 英国天空广播天空公司(英语:Sky Ltd)是一间泛欧卫星广播公司,总部设于伦敦,业务遍及英国、爱尔兰、意大利、德国及奥地利等地。旗下英国天空公司(Sky UK Limited)是英国最大收费电视台,拥有超过1
- 吉达吉达(阿拉伯语:جدّة),沙特阿拉伯麦加省一个港口城市,位于红海东岸,麦加以西64公里,吉达都市区面积1200km²,吉达市面积约560km²,人口超过3,400,000,是仅次于首都利雅得的第二大
- 商品经济商品经济是商品的生产、交换、出售的总和。商品经济也是一种社会经济模式,是指直接以交换为目的经济形式,包括商品生产和商品交换。相对于自给自足的自然经济,商品经济的特点是
- 介子列表介子由一个夸克和一个反夸克组成的不稳定亚原子粒子的列表。它们是强子的一种。强子的另一个成员是重子,由三个夸克组成的亚原子粒子。介子和重子的主要区别在于介子具有整数
- 詹姆斯·布莱恩特·科南特詹姆斯·布莱恩特·科南特(英语:James Bryant Conant,1893年3月26日-1978年2月11日),美国化学家、政治家和教育家,曾任哈佛大学校长及美国驻西德大使。1893年3月26日,科南特出生于美