SL2(ℝ)

✍ dations ◷ 2025-06-14 02:28:26 #群论,李群,射影几何,双曲几何

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,特殊线性群 SL₂(ℝ) 是行列式为 1 的 2×2 实矩阵组成的群:

它是一个三维李群,在几何、拓扑、表示论及物理中有重要应用.

与 SL₂(ℝ) 密切相关的是射影线性群 PSL₂(ℝ)。这是将 SL₂(ℝ) 中每个元素与它的负元素等同得到的商:

一些作者将这个群记做 SL(2,ℝ).这是一个单李群,包含模群 PSL₂(ℤ).

SL2(ℝ) 是 ℝ2 上所有保持定向面积的线性变换群。它同构于辛群 Sp2(ℝ) 以及广义特殊酉群 SU(1,1)。它也同构于单位长共四元数群。

商 PSL2(ℝ) 有多个有趣的描述:

PSL2(ℝ) 的元素做为线性分式变换作用在实射影直线 R { } {\displaystyle \mathbb {R} \cup \{\infty \}} 的本征值满足特征多项式

从而

这导致了如下元素分类:

椭圆型元素的本征值都是复数,是单位圆周上的共轭值。这样的元素的作用是欧几里得空间中的旋转,相应的 PSL2(ℝ) 元素之作用是双曲平面与闵可夫斯基空间的旋转。

模群的椭圆型元素的本征值一定为 {, 1/} 形式,其中 是一个本原3次、4次、或6次单位根。他们是模群中所有有限阶元素,他们作用在环面上是周期性微分同胚。

抛物型元素只有一个本征值,1 或者 -1。这样的元素作用在欧几里得平面上是错切映射,相应 PSL2(ℝ) 中元素作用在双曲平面上是极限旋转(limit rotation),在闵可夫斯基空间上的作用是零旋转。

模群的抛物型元素作用在环面上是德恩扭转(Dehn twist(英语:Dehn twist))。

双曲型元素的本征值都是实数,互为倒数。这样一个元素作用在欧几里得空间上是挤压映射(squeeze mapping(英语:squeeze mapping)),相应的 PSL2(ℝ) 元素作用在双曲平面是平移,在闵可夫斯基空间上的作用是洛伦兹递升。

模群的双曲型元素作用在环面上是阿诺索夫微分同胚(Anosov diffeomorphism(英语:Anosov diffeomorphism))。

做为一个拓扑空间,PSL2() 可以描述为双曲平面的单位切丛,这是一个圆丛,有由双曲平面上辛结构诱导的自然切触结构。SL2() 是 PSL2() 的二重复盖,可以认为是双曲平面上的旋量丛。

SL2() 的基本群是无限循环群 ℤ。其万有覆盖群记做 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} ,是一个有限维李群但不是矩阵群。即 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 没有忠实有限维表示。

做为一个拓扑空间, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是双曲平面上一个线丛。若赋予一个左不变度量,3-流形 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 成为瑟斯顿八几何之一。例如, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是任何双曲曲面的单位切丛的万有覆盖。任何以 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 为模型的流形是可定向的,也是一个二维双曲轨形上的圆丛(一个塞弗特纤维空间(Seifert fiber space(英语:Seifert fiber space)))。

SL2(ℝ) 的中心是两个元素的群 {-1,1},商 PSL2(ℝ) 是单群。

PSL2(ℝ) 的离散子群称为富克斯群(Fuchsian group(英语:Fuchsian group))。他们是欧几里得壁纸群(wallpaper group(英语:wallpaper group))和饰带群(Frieze group(英语:Frieze group))的双曲类比。最有名的是模群 PSL2(ℤ),它作用在双曲平面由理想三角形形成的嵌图上。

圆群SO(2)是 SL2(ℝ) 的一个极大紧子群,圆 SO(2)/{-1,+1} 是 PSL2(ℝ) 的一个极大紧子群。

PSL2(ℝ) 的舒尔乘子(Schur multiplier(英语:Schur multiplier))是 ℤ,万有中心扩张与万有覆盖群相同。

SL2(ℝ) 是一个实非紧单李群,也是复李群 SL2(ℂ) 的分裂实形式。SL2(ℝ) 的李代数记做 sl2(ℝ),是所有迹为零的 2×2 实矩阵。 它是 VIII 型比安基代数。

SL2(ℝ) 的有限维表示理论等价于SU(2)的表示理论,这是 SL2(ℂ) 的紧实形式。特别地 SL2(ℝ) 没有非平凡有限维酉表示。

SL2(ℝ) 的无限维表示理论相当有意思。这个群有多类酉表示,这被盖尔范德、奈马克 (1946)、巴格曼 (1947)、Harish-Chandra (1952) 详细地解决了。

相关

  • 全距全距(英语:range,符号R),又称极差,用来表示统计资料中的变异量数(英语:measures of variation),为最大值与最小值之间的差额,即最大值减最小值后所得数值。其中
  • 袁应泰袁应泰(?-1621年),字大来,号位宇,陕西凤翔县人。晚明政治人物。袁应泰于万历二十三年(1595年)中进士,授临漳知县,任内筑长堤四十余里,捍御漳水。迁工部主事,起用河南右参政,官至兵部侍郎。
  • 欧洲汽车废气排放标准欧洲汽车废气排放标准是欧盟国家为限制汽车废气排放污染物对环境造成的危害而共同采用的汽车废气排放标准。当前对几乎所有类型的车辆排放的氮氧化物(NOx)、碳氢化合物(HC)、一
  • 布拉干省布拉卡省或译布拉坎省(Bulacan)是菲律宾的一个省份,位于中央吕宋政区。首府是马洛洛斯市。布拉卡省西邻邦板牙省、北邻新怡诗夏省、奥罗拉省及奎松省,南边为黎刹省。布拉卡省也
  • 伊斯基亚伊斯基亚(Ischia)是第勒尼安海中的一个火山岛,距离意大利南部城市那不勒斯约为30公里。岛屿的形状大致呈梯形,东西长约10公里,南北约7公里,海岸线总长约34公里,面积46.3平方公里。
  • 历史哲学历史哲学是一个与历史学有关的哲学分支,旨在探讨历史的模式与意义、历史学的性质与方法、历史写作的结构与规律等问题。根据具体研究对象的不同,历史哲学大致可以分为三类:思辨
  • 米仓诚米仓诚(1970年12月28日-),前日本足球运动员。
  • NHK宇都宫放送局NHK宇都宫放送局,是日本放送协会位于栃木县宇都宫市的地方放送局,也是负责主管事务的放送局。另外,NHK宇都宫放送局还负责转播NHK东京教育频道(JOAB-DTV)。NHK宇都宫放送局在栃木
  • 门球门球是一项多人参加的用槌击打小球过小门的竞技娱乐性体育项目,特别受到中老年人的喜爱。门球一般在长20-25米,宽15-20米的场地中进行,参与者分为两队,一队一般为5人。比赛采取
  • 李文忠李文忠可以指: