SL2(ℝ)

✍ dations ◷ 2025-04-03 17:31:35 #群论,李群,射影几何,双曲几何

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,特殊线性群 SL₂(ℝ) 是行列式为 1 的 2×2 实矩阵组成的群:

它是一个三维李群,在几何、拓扑、表示论及物理中有重要应用.

与 SL₂(ℝ) 密切相关的是射影线性群 PSL₂(ℝ)。这是将 SL₂(ℝ) 中每个元素与它的负元素等同得到的商:

一些作者将这个群记做 SL(2,ℝ).这是一个单李群,包含模群 PSL₂(ℤ).

SL2(ℝ) 是 ℝ2 上所有保持定向面积的线性变换群。它同构于辛群 Sp2(ℝ) 以及广义特殊酉群 SU(1,1)。它也同构于单位长共四元数群。

商 PSL2(ℝ) 有多个有趣的描述:

PSL2(ℝ) 的元素做为线性分式变换作用在实射影直线 R { } {\displaystyle \mathbb {R} \cup \{\infty \}} 的本征值满足特征多项式

从而

这导致了如下元素分类:

椭圆型元素的本征值都是复数,是单位圆周上的共轭值。这样的元素的作用是欧几里得空间中的旋转,相应的 PSL2(ℝ) 元素之作用是双曲平面与闵可夫斯基空间的旋转。

模群的椭圆型元素的本征值一定为 {, 1/} 形式,其中 是一个本原3次、4次、或6次单位根。他们是模群中所有有限阶元素,他们作用在环面上是周期性微分同胚。

抛物型元素只有一个本征值,1 或者 -1。这样的元素作用在欧几里得平面上是错切映射,相应 PSL2(ℝ) 中元素作用在双曲平面上是极限旋转(limit rotation),在闵可夫斯基空间上的作用是零旋转。

模群的抛物型元素作用在环面上是德恩扭转(Dehn twist(英语:Dehn twist))。

双曲型元素的本征值都是实数,互为倒数。这样一个元素作用在欧几里得空间上是挤压映射(squeeze mapping(英语:squeeze mapping)),相应的 PSL2(ℝ) 元素作用在双曲平面是平移,在闵可夫斯基空间上的作用是洛伦兹递升。

模群的双曲型元素作用在环面上是阿诺索夫微分同胚(Anosov diffeomorphism(英语:Anosov diffeomorphism))。

做为一个拓扑空间,PSL2() 可以描述为双曲平面的单位切丛,这是一个圆丛,有由双曲平面上辛结构诱导的自然切触结构。SL2() 是 PSL2() 的二重复盖,可以认为是双曲平面上的旋量丛。

SL2() 的基本群是无限循环群 ℤ。其万有覆盖群记做 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} ,是一个有限维李群但不是矩阵群。即 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 没有忠实有限维表示。

做为一个拓扑空间, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是双曲平面上一个线丛。若赋予一个左不变度量,3-流形 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 成为瑟斯顿八几何之一。例如, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是任何双曲曲面的单位切丛的万有覆盖。任何以 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 为模型的流形是可定向的,也是一个二维双曲轨形上的圆丛(一个塞弗特纤维空间(Seifert fiber space(英语:Seifert fiber space)))。

SL2(ℝ) 的中心是两个元素的群 {-1,1},商 PSL2(ℝ) 是单群。

PSL2(ℝ) 的离散子群称为富克斯群(Fuchsian group(英语:Fuchsian group))。他们是欧几里得壁纸群(wallpaper group(英语:wallpaper group))和饰带群(Frieze group(英语:Frieze group))的双曲类比。最有名的是模群 PSL2(ℤ),它作用在双曲平面由理想三角形形成的嵌图上。

圆群SO(2)是 SL2(ℝ) 的一个极大紧子群,圆 SO(2)/{-1,+1} 是 PSL2(ℝ) 的一个极大紧子群。

PSL2(ℝ) 的舒尔乘子(Schur multiplier(英语:Schur multiplier))是 ℤ,万有中心扩张与万有覆盖群相同。

SL2(ℝ) 是一个实非紧单李群,也是复李群 SL2(ℂ) 的分裂实形式。SL2(ℝ) 的李代数记做 sl2(ℝ),是所有迹为零的 2×2 实矩阵。 它是 VIII 型比安基代数。

SL2(ℝ) 的有限维表示理论等价于SU(2)的表示理论,这是 SL2(ℂ) 的紧实形式。特别地 SL2(ℝ) 没有非平凡有限维酉表示。

SL2(ℝ) 的无限维表示理论相当有意思。这个群有多类酉表示,这被盖尔范德、奈马克 (1946)、巴格曼 (1947)、Harish-Chandra (1952) 详细地解决了。

相关

  • 太阳帆太阳帆(也称为光帆,特别是它使用来自于太阳以外的光源时)是使用巨大的薄膜镜片,以太阳的辐射压做为太空船推进力的一种计划。辐射压非常小,但不同于火箭的是,太阳帆不需要燃料。推
  • 每日允许摄入量一日可接受摄取量 或 ADI 是指食物或饮用水中特定物质每天不影响健康下口服可摄入量。最初适用于食品添加剂,后来也适用于兽药或农药残留物。ADI通常以每公斤体重每天可摄取
  • 兴趣兴趣是人类在空闲时间喜欢做的休闲活动。兴趣是一种人们在空闲时享受及乐于去做的活动,通常人们不是以赚钱为目的而参与这些活动。或者去某处待着,以心情愉快为目的。例如:
  • 黄海道黄海道(朝鲜语:황해도/黃海道 Hwanghae do */?)是根据韩国法律划分的一个道,实际上由朝鲜管辖。由于韩国声称其为朝鲜半岛唯一合法的政权,因此在韩国官方出版的地图包括了该区域
  • 生部生部,为汉字索引中的部首之一,康熙字典214个部首中的第一百个(五划的则为第六个)。就繁体及简体中文中,生部归于五划部首。生部通常是从左、右、下方均可为部字。且无其他部首可
  • 炉是一种提供燃料燃烧的容器,多以陶土烧制,亦有以木、石、金属制成,有瓮形、盆形,亦有四方形。使用方法为在底部铺上灰,其上置放燃料(如煤炭),燃烧燃料时可用来取暖或加热物体,属早
  • 印度民族起义哗变的印度兵被不列颠东印度公司剿除 大英帝国 东印度公司 尼泊尔 21个印度土邦:印度民族起义指1857-1858年期间印度反对不列颠东印度公司殖民统治的一次失败的大型起义。学
  • 快盗龙属快盗龙属(属名:,拉丁文中意为“敏捷的盗贼”)或盗伶龙属,或在中文圈被错误翻译为“迅猛龙”,是蜥臀目兽脚亚目驰龙科恐龙的一属,大约生活于7,500万至7,100万年前的白垩纪中晚期,并且
  • 卡雷尔·爱尔本卡雷尔·雅洛米尔·爱尔本(Karel Jaromír Erben,1811年11月7日-1870年11月21日),捷克诗人。他毕生从事搜集、整理和研究民间歌曲、歌谣、神话和传说故事,同时自己也创作诗歌。他
  • 本·约翰逊本·约翰逊可以指: