其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)
G2 F4E6 E7E8
劳仑兹群
庞加莱群
环路群
量子群
O(∞) SU(∞) Sp(∞)
在数学中,特殊线性群 SL₂(ℝ) 是行列式为 1 的 2×2 实矩阵组成的群:
它是一个三维李群,在几何、拓扑、表示论及物理中有重要应用.
与 SL₂(ℝ) 密切相关的是射影线性群 PSL₂(ℝ)。这是将 SL₂(ℝ) 中每个元素与它的负元素等同得到的商:
一些作者将这个群记做 SL(2,ℝ).这是一个单李群,包含模群 PSL₂(ℤ).
SL2(ℝ) 是 ℝ2 上所有保持定向面积的线性变换群。它同构于辛群 Sp2(ℝ) 以及广义特殊酉群 SU(1,1)。它也同构于单位长共四元数群。
商 PSL2(ℝ) 有多个有趣的描述:
PSL2(ℝ) 的元素做为线性分式变换作用在实射影直线 的本征值满足特征多项式
从而
这导致了如下元素分类:
椭圆型元素的本征值都是复数,是单位圆周上的共轭值。这样的元素的作用是欧几里得空间中的旋转,相应的 PSL2(ℝ) 元素之作用是双曲平面与闵可夫斯基空间的旋转。
模群的椭圆型元素的本征值一定为 {, 1/} 形式,其中 是一个本原3次、4次、或6次单位根。他们是模群中所有有限阶元素,他们作用在环面上是周期性微分同胚。
抛物型元素只有一个本征值,1 或者 -1。这样的元素作用在欧几里得平面上是错切映射,相应 PSL2(ℝ) 中元素作用在双曲平面上是极限旋转(limit rotation),在闵可夫斯基空间上的作用是零旋转。
模群的抛物型元素作用在环面上是德恩扭转(Dehn twist(英语:Dehn twist))。
双曲型元素的本征值都是实数,互为倒数。这样一个元素作用在欧几里得空间上是挤压映射(squeeze mapping(英语:squeeze mapping)),相应的 PSL2(ℝ) 元素作用在双曲平面是平移,在闵可夫斯基空间上的作用是洛伦兹递升。
模群的双曲型元素作用在环面上是阿诺索夫微分同胚(Anosov diffeomorphism(英语:Anosov diffeomorphism))。
做为一个拓扑空间,PSL2() 可以描述为双曲平面的单位切丛,这是一个圆丛,有由双曲平面上辛结构诱导的自然切触结构。SL2() 是 PSL2() 的二重复盖,可以认为是双曲平面上的旋量丛。
SL2() 的基本群是无限循环群 ℤ。其万有覆盖群记做 ,是一个有限维李群但不是矩阵群。即 没有忠实有限维表示。
做为一个拓扑空间, 是双曲平面上一个线丛。若赋予一个左不变度量,3-流形 成为瑟斯顿八几何之一。例如, 是任何双曲曲面的单位切丛的万有覆盖。任何以 为模型的流形是可定向的,也是一个二维双曲轨形上的圆丛(一个塞弗特纤维空间(Seifert fiber space(英语:Seifert fiber space)))。
SL2(ℝ) 的中心是两个元素的群 {-1,1},商 PSL2(ℝ) 是单群。
PSL2(ℝ) 的离散子群称为富克斯群(Fuchsian group(英语:Fuchsian group))。他们是欧几里得壁纸群(wallpaper group(英语:wallpaper group))和饰带群(Frieze group(英语:Frieze group))的双曲类比。最有名的是模群 PSL2(ℤ),它作用在双曲平面由理想三角形形成的嵌图上。
圆群SO(2)是 SL2(ℝ) 的一个极大紧子群,圆 SO(2)/{-1,+1} 是 PSL2(ℝ) 的一个极大紧子群。
PSL2(ℝ) 的舒尔乘子(Schur multiplier(英语:Schur multiplier))是 ℤ,万有中心扩张与万有覆盖群相同。
SL2(ℝ) 是一个实非紧单李群,也是复李群 SL2(ℂ) 的分裂实形式。SL2(ℝ) 的李代数记做 sl2(ℝ),是所有迹为零的 2×2 实矩阵。 它是 VIII 型比安基代数。
SL2(ℝ) 的有限维表示理论等价于SU(2)的表示理论,这是 SL2(ℂ) 的紧实形式。特别地 SL2(ℝ) 没有非平凡有限维酉表示。
SL2(ℝ) 的无限维表示理论相当有意思。这个群有多类酉表示,这被盖尔范德、奈马克 (1946)、巴格曼 (1947)、Harish-Chandra (1952) 详细地解决了。