SL2(ℝ)

✍ dations ◷ 2025-09-18 17:10:21 #群论,李群,射影几何,双曲几何

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,特殊线性群 SL₂(ℝ) 是行列式为 1 的 2×2 实矩阵组成的群:

它是一个三维李群,在几何、拓扑、表示论及物理中有重要应用.

与 SL₂(ℝ) 密切相关的是射影线性群 PSL₂(ℝ)。这是将 SL₂(ℝ) 中每个元素与它的负元素等同得到的商:

一些作者将这个群记做 SL(2,ℝ).这是一个单李群,包含模群 PSL₂(ℤ).

SL2(ℝ) 是 ℝ2 上所有保持定向面积的线性变换群。它同构于辛群 Sp2(ℝ) 以及广义特殊酉群 SU(1,1)。它也同构于单位长共四元数群。

商 PSL2(ℝ) 有多个有趣的描述:

PSL2(ℝ) 的元素做为线性分式变换作用在实射影直线 R { } {\displaystyle \mathbb {R} \cup \{\infty \}} 的本征值满足特征多项式

从而

这导致了如下元素分类:

椭圆型元素的本征值都是复数,是单位圆周上的共轭值。这样的元素的作用是欧几里得空间中的旋转,相应的 PSL2(ℝ) 元素之作用是双曲平面与闵可夫斯基空间的旋转。

模群的椭圆型元素的本征值一定为 {, 1/} 形式,其中 是一个本原3次、4次、或6次单位根。他们是模群中所有有限阶元素,他们作用在环面上是周期性微分同胚。

抛物型元素只有一个本征值,1 或者 -1。这样的元素作用在欧几里得平面上是错切映射,相应 PSL2(ℝ) 中元素作用在双曲平面上是极限旋转(limit rotation),在闵可夫斯基空间上的作用是零旋转。

模群的抛物型元素作用在环面上是德恩扭转(Dehn twist(英语:Dehn twist))。

双曲型元素的本征值都是实数,互为倒数。这样一个元素作用在欧几里得空间上是挤压映射(squeeze mapping(英语:squeeze mapping)),相应的 PSL2(ℝ) 元素作用在双曲平面是平移,在闵可夫斯基空间上的作用是洛伦兹递升。

模群的双曲型元素作用在环面上是阿诺索夫微分同胚(Anosov diffeomorphism(英语:Anosov diffeomorphism))。

做为一个拓扑空间,PSL2() 可以描述为双曲平面的单位切丛,这是一个圆丛,有由双曲平面上辛结构诱导的自然切触结构。SL2() 是 PSL2() 的二重复盖,可以认为是双曲平面上的旋量丛。

SL2() 的基本群是无限循环群 ℤ。其万有覆盖群记做 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} ,是一个有限维李群但不是矩阵群。即 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 没有忠实有限维表示。

做为一个拓扑空间, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是双曲平面上一个线丛。若赋予一个左不变度量,3-流形 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 成为瑟斯顿八几何之一。例如, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是任何双曲曲面的单位切丛的万有覆盖。任何以 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 为模型的流形是可定向的,也是一个二维双曲轨形上的圆丛(一个塞弗特纤维空间(Seifert fiber space(英语:Seifert fiber space)))。

SL2(ℝ) 的中心是两个元素的群 {-1,1},商 PSL2(ℝ) 是单群。

PSL2(ℝ) 的离散子群称为富克斯群(Fuchsian group(英语:Fuchsian group))。他们是欧几里得壁纸群(wallpaper group(英语:wallpaper group))和饰带群(Frieze group(英语:Frieze group))的双曲类比。最有名的是模群 PSL2(ℤ),它作用在双曲平面由理想三角形形成的嵌图上。

圆群SO(2)是 SL2(ℝ) 的一个极大紧子群,圆 SO(2)/{-1,+1} 是 PSL2(ℝ) 的一个极大紧子群。

PSL2(ℝ) 的舒尔乘子(Schur multiplier(英语:Schur multiplier))是 ℤ,万有中心扩张与万有覆盖群相同。

SL2(ℝ) 是一个实非紧单李群,也是复李群 SL2(ℂ) 的分裂实形式。SL2(ℝ) 的李代数记做 sl2(ℝ),是所有迹为零的 2×2 实矩阵。 它是 VIII 型比安基代数。

SL2(ℝ) 的有限维表示理论等价于SU(2)的表示理论,这是 SL2(ℂ) 的紧实形式。特别地 SL2(ℝ) 没有非平凡有限维酉表示。

SL2(ℝ) 的无限维表示理论相当有意思。这个群有多类酉表示,这被盖尔范德、奈马克 (1946)、巴格曼 (1947)、Harish-Chandra (1952) 详细地解决了。

相关

  • 联邦紧急救援署联邦紧急救援署(英语:Federal Emergency Relief Administration,缩写为FERA)的前身是由胡佛总统在1932年创建的紧急救援署(Emergency Relief Administration,ERA)。1933年5月,国会通
  • 钻孔钻孔是一种切削(英语:cutting)加工方式,利用钻头在固态材料上切削或是加大圆形截面的孔。钻头是旋转型的切削刀具,多半有多个切削刀刃,在钻孔时钻头会受压接近工件,转速从数百RPM到
  • 尿黑酸尿黑酸(2,5-二羟基苯乙酸)是一种酚酸,发现于野草莓树蜜中。它也存在于细菌性植物病原体野油菜黄单胞菌(Xanthomonas campestris pv. phaseoli)中,在解脂耶罗维亚酵母(Yarrowia lipo
  • 中国领导人最高领导人(英语:supreme leader)通常指的是一个人在国家、机构或其他类似组织中,被赋予或能发挥最大权威的领导者。宗教上,这种角色通常是被认为是地上的神或神的意志代表。政治
  • 凤凰群岛菲尼克斯群岛(Phoenix Islands),是基里巴斯三大主要岛群之一,位于吉尔伯特群岛以东、莱恩群岛以西。1930年代时英国一度计划开发此群岛,但未付诸实施。后美国也曾对此岛提出过领
  • 白部白部,为汉字索引中的部首之一,康熙字典214个部首中的第一百〇六个(五划的则为第十二个)。就繁体和简体中文中,白部归于五划部首。白部通常是从上、下、左方均可为部字。且无其他
  • 奋武将军奋武将军是杂号将军之一 ,是高级将军名号,实际权利是各路军队中的总监军。东汉末年,各路诸侯讨伐董卓时,任命曹操担任奋武将军一职;沮授也曾在袁绍军中任奋武将军的官职。吕布也
  • 洛伦兹·奥肯洛伦兹·奥肯(Lorenz Oken,1779年8月1日-1851年8月11日)为德国博物学家。
  • 卷柱头薹草卷柱头薹草(学名:)为莎草科薹草属下的一个种。分布于朝鲜、俄罗斯远东地区、日本以及中国大陆的陕西、浙江、吉林、辽宁等地,生长于海拔220米至1,000米的地区,多生长在水沟边、沼
  • 山叶寅楠山叶寅楠(1851年5月20日-1916年8月8日),原名山羽寅楠,日本企业家,雅马哈创始人。早年定居滨松市,以维修医疗器械为生,后制造了日本第一台簧风琴。1887年,山叶寅楠在滨松市创建了雅马