SL2(ℝ)

✍ dations ◷ 2025-10-14 14:41:58 #群论,李群,射影几何,双曲几何

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,特殊线性群 SL₂(ℝ) 是行列式为 1 的 2×2 实矩阵组成的群:

它是一个三维李群,在几何、拓扑、表示论及物理中有重要应用.

与 SL₂(ℝ) 密切相关的是射影线性群 PSL₂(ℝ)。这是将 SL₂(ℝ) 中每个元素与它的负元素等同得到的商:

一些作者将这个群记做 SL(2,ℝ).这是一个单李群,包含模群 PSL₂(ℤ).

SL2(ℝ) 是 ℝ2 上所有保持定向面积的线性变换群。它同构于辛群 Sp2(ℝ) 以及广义特殊酉群 SU(1,1)。它也同构于单位长共四元数群。

商 PSL2(ℝ) 有多个有趣的描述:

PSL2(ℝ) 的元素做为线性分式变换作用在实射影直线 R { } {\displaystyle \mathbb {R} \cup \{\infty \}} 的本征值满足特征多项式

从而

这导致了如下元素分类:

椭圆型元素的本征值都是复数,是单位圆周上的共轭值。这样的元素的作用是欧几里得空间中的旋转,相应的 PSL2(ℝ) 元素之作用是双曲平面与闵可夫斯基空间的旋转。

模群的椭圆型元素的本征值一定为 {, 1/} 形式,其中 是一个本原3次、4次、或6次单位根。他们是模群中所有有限阶元素,他们作用在环面上是周期性微分同胚。

抛物型元素只有一个本征值,1 或者 -1。这样的元素作用在欧几里得平面上是错切映射,相应 PSL2(ℝ) 中元素作用在双曲平面上是极限旋转(limit rotation),在闵可夫斯基空间上的作用是零旋转。

模群的抛物型元素作用在环面上是德恩扭转(Dehn twist(英语:Dehn twist))。

双曲型元素的本征值都是实数,互为倒数。这样一个元素作用在欧几里得空间上是挤压映射(squeeze mapping(英语:squeeze mapping)),相应的 PSL2(ℝ) 元素作用在双曲平面是平移,在闵可夫斯基空间上的作用是洛伦兹递升。

模群的双曲型元素作用在环面上是阿诺索夫微分同胚(Anosov diffeomorphism(英语:Anosov diffeomorphism))。

做为一个拓扑空间,PSL2() 可以描述为双曲平面的单位切丛,这是一个圆丛,有由双曲平面上辛结构诱导的自然切触结构。SL2() 是 PSL2() 的二重复盖,可以认为是双曲平面上的旋量丛。

SL2() 的基本群是无限循环群 ℤ。其万有覆盖群记做 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} ,是一个有限维李群但不是矩阵群。即 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 没有忠实有限维表示。

做为一个拓扑空间, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是双曲平面上一个线丛。若赋予一个左不变度量,3-流形 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 成为瑟斯顿八几何之一。例如, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是任何双曲曲面的单位切丛的万有覆盖。任何以 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 为模型的流形是可定向的,也是一个二维双曲轨形上的圆丛(一个塞弗特纤维空间(Seifert fiber space(英语:Seifert fiber space)))。

SL2(ℝ) 的中心是两个元素的群 {-1,1},商 PSL2(ℝ) 是单群。

PSL2(ℝ) 的离散子群称为富克斯群(Fuchsian group(英语:Fuchsian group))。他们是欧几里得壁纸群(wallpaper group(英语:wallpaper group))和饰带群(Frieze group(英语:Frieze group))的双曲类比。最有名的是模群 PSL2(ℤ),它作用在双曲平面由理想三角形形成的嵌图上。

圆群SO(2)是 SL2(ℝ) 的一个极大紧子群,圆 SO(2)/{-1,+1} 是 PSL2(ℝ) 的一个极大紧子群。

PSL2(ℝ) 的舒尔乘子(Schur multiplier(英语:Schur multiplier))是 ℤ,万有中心扩张与万有覆盖群相同。

SL2(ℝ) 是一个实非紧单李群,也是复李群 SL2(ℂ) 的分裂实形式。SL2(ℝ) 的李代数记做 sl2(ℝ),是所有迹为零的 2×2 实矩阵。 它是 VIII 型比安基代数。

SL2(ℝ) 的有限维表示理论等价于SU(2)的表示理论,这是 SL2(ℂ) 的紧实形式。特别地 SL2(ℝ) 没有非平凡有限维酉表示。

SL2(ℝ) 的无限维表示理论相当有意思。这个群有多类酉表示,这被盖尔范德、奈马克 (1946)、巴格曼 (1947)、Harish-Chandra (1952) 详细地解决了。

相关

  • 高压氧治疗高压氧治疗,或简称高压氧,英文:Hyperbaric oxygen therapy (HBOT) ,乃医学上利用高压的氧气来提供治疗的方式。高压氧治疗利用了几个原理:高压氧最主要的治疗适应症包括:以上除一
  • 尼皮贡湖尼皮贡湖(英语:Lake Nipigon)也称尼匹冈湖,位于加拿大安大略省中西部,桑德贝东北130公里。湖泊长110公里,宽80公里,面积4848平方公里。最深深度165米。湖名在当地印第安语中意为“
  • 托尔索伊勒山托尔索伊勒山(德语:Torsäule),是奥地利的山峰,位于该国中部,由萨尔茨堡州负责管辖,属于上柯尼希山的一部分,距离绍伯山0.4公里,海拔高度2,588米,每年平均降雨量2,176毫米。
  • 恩斯特·海因里希·弗里德里希·迈耶恩斯特·海因里希·弗里德里希·迈耶(Ernst Heinrich Friedrich Meyer,1791年1月1日-1858年8月7日)为德国植物学家及植物历史学家。
  • 日落大道 (电影)《日落大道》(英语:Sunset Boulevard)是一部1950年出品的美国黑色电影。它以横穿洛杉矶和贝弗利山的相同名字的著名大道命名,由比利·怀德执导和编剧。威廉·荷顿在片中饰演落魄
  • 皮尔斯·布鲁斯南皮尔斯·布兰登·布鲁斯南,(英语:Pierce Brendan Brosnan,1953年5月16日-),是一名爱尔兰裔演员,电影制片和环保人士。布鲁斯自从16岁离开后学校,便开始学习商业插画。他其后接着在伦
  • 斑子麻黄斑子麻黄(学名:),为麻黄科麻黄属下的一个植物种。
  • 盲公饼盲公饼,是广东糕饼甜小食,盲公饼由佛山何声朝于嘉庆年后期创制。何声朝是一位失明的算命师,故名盲公饼。盲公饼由糯米粉粉团、沙糖、花生、芝麻、猪肉和花生油等烘焙而成。创制
  • 圣维南圣维南(法语:Adhémar-Jean-Claude Barré de Saint-Venant,1797年8月23日-1886年1月6日),法国力学家、工程师和数学家。他的姓本应为“巴雷·德圣维南”,但在非法语文献中常被称为
  • 火星需要妈妈《火星需要妈妈》(英语:)是一部由西蒙·威尔斯执导的2011年美国动画电影,属于科幻小说和冒险类电影,由他和桑迪·威尔斯改编,改编自伯克利·布雷思的同名儿童读物。米洛是一个九岁