SL2(ℝ)

✍ dations ◷ 2025-09-18 16:17:07 #群论,李群,射影几何,双曲几何

其他有限群
对称群,
二面体群,
无限群
整数, Z
模群, PSL(2,Z) 和 SL(2,Z)

G2 F4E6 E7E8
劳仑兹群
庞加莱群

环路群
量子群
O(∞) SU(∞) Sp(∞)

在数学中,特殊线性群 SL₂(ℝ) 是行列式为 1 的 2×2 实矩阵组成的群:

它是一个三维李群,在几何、拓扑、表示论及物理中有重要应用.

与 SL₂(ℝ) 密切相关的是射影线性群 PSL₂(ℝ)。这是将 SL₂(ℝ) 中每个元素与它的负元素等同得到的商:

一些作者将这个群记做 SL(2,ℝ).这是一个单李群,包含模群 PSL₂(ℤ).

SL2(ℝ) 是 ℝ2 上所有保持定向面积的线性变换群。它同构于辛群 Sp2(ℝ) 以及广义特殊酉群 SU(1,1)。它也同构于单位长共四元数群。

商 PSL2(ℝ) 有多个有趣的描述:

PSL2(ℝ) 的元素做为线性分式变换作用在实射影直线 R { } {\displaystyle \mathbb {R} \cup \{\infty \}} 的本征值满足特征多项式

从而

这导致了如下元素分类:

椭圆型元素的本征值都是复数,是单位圆周上的共轭值。这样的元素的作用是欧几里得空间中的旋转,相应的 PSL2(ℝ) 元素之作用是双曲平面与闵可夫斯基空间的旋转。

模群的椭圆型元素的本征值一定为 {, 1/} 形式,其中 是一个本原3次、4次、或6次单位根。他们是模群中所有有限阶元素,他们作用在环面上是周期性微分同胚。

抛物型元素只有一个本征值,1 或者 -1。这样的元素作用在欧几里得平面上是错切映射,相应 PSL2(ℝ) 中元素作用在双曲平面上是极限旋转(limit rotation),在闵可夫斯基空间上的作用是零旋转。

模群的抛物型元素作用在环面上是德恩扭转(Dehn twist(英语:Dehn twist))。

双曲型元素的本征值都是实数,互为倒数。这样一个元素作用在欧几里得空间上是挤压映射(squeeze mapping(英语:squeeze mapping)),相应的 PSL2(ℝ) 元素作用在双曲平面是平移,在闵可夫斯基空间上的作用是洛伦兹递升。

模群的双曲型元素作用在环面上是阿诺索夫微分同胚(Anosov diffeomorphism(英语:Anosov diffeomorphism))。

做为一个拓扑空间,PSL2() 可以描述为双曲平面的单位切丛,这是一个圆丛,有由双曲平面上辛结构诱导的自然切触结构。SL2() 是 PSL2() 的二重复盖,可以认为是双曲平面上的旋量丛。

SL2() 的基本群是无限循环群 ℤ。其万有覆盖群记做 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} ,是一个有限维李群但不是矩阵群。即 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 没有忠实有限维表示。

做为一个拓扑空间, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是双曲平面上一个线丛。若赋予一个左不变度量,3-流形 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 成为瑟斯顿八几何之一。例如, SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 是任何双曲曲面的单位切丛的万有覆盖。任何以 SL 2 ( R ) ¯ {\displaystyle {\overline {{\mbox{SL}}_{2}(\mathbb {R} )}}} 为模型的流形是可定向的,也是一个二维双曲轨形上的圆丛(一个塞弗特纤维空间(Seifert fiber space(英语:Seifert fiber space)))。

SL2(ℝ) 的中心是两个元素的群 {-1,1},商 PSL2(ℝ) 是单群。

PSL2(ℝ) 的离散子群称为富克斯群(Fuchsian group(英语:Fuchsian group))。他们是欧几里得壁纸群(wallpaper group(英语:wallpaper group))和饰带群(Frieze group(英语:Frieze group))的双曲类比。最有名的是模群 PSL2(ℤ),它作用在双曲平面由理想三角形形成的嵌图上。

圆群SO(2)是 SL2(ℝ) 的一个极大紧子群,圆 SO(2)/{-1,+1} 是 PSL2(ℝ) 的一个极大紧子群。

PSL2(ℝ) 的舒尔乘子(Schur multiplier(英语:Schur multiplier))是 ℤ,万有中心扩张与万有覆盖群相同。

SL2(ℝ) 是一个实非紧单李群,也是复李群 SL2(ℂ) 的分裂实形式。SL2(ℝ) 的李代数记做 sl2(ℝ),是所有迹为零的 2×2 实矩阵。 它是 VIII 型比安基代数。

SL2(ℝ) 的有限维表示理论等价于SU(2)的表示理论,这是 SL2(ℂ) 的紧实形式。特别地 SL2(ℝ) 没有非平凡有限维酉表示。

SL2(ℝ) 的无限维表示理论相当有意思。这个群有多类酉表示,这被盖尔范德、奈马克 (1946)、巴格曼 (1947)、Harish-Chandra (1952) 详细地解决了。

相关

  • 水痘水痘(英语:Chickenpox,或称Varicella),是一种因初次感染水痘带状疱疹病毒(英语:Varicella zoster virus)(Varicella zoster virus/VZV)而引起的疾病,具高度传染性。本病会产生皮疹,而这
  • 旋光异构体对映异构体(英语:Enantiomer (/ɪˈnæntiəmər, ɛ-, -tioʊ-/ ə-NAN-tee-ə-mər)),又称对掌异构物、光学异构物、镜像异构物或旋光异构体,不能与彼此立体异构体镜像完全重叠
  • 黏性末端所谓黏性末端或黏状末端('Sticky Ends'),指DNA重组技术中,DNA限制酶在切开DNA的双链结构时,形成的突出末端,与平末端('Blunt Ends')相对。平末端则是上述切割过程中不突出的末端,所以
  • 2013年NBA选秀2013年NBA选秀于2013年6月27日在美国纽约布鲁克林巴克莱中心举行。在本次选秀中,美国国家篮球协会在美国大学篮球业余运动员和其他符合资格的运动员中挑选球员。这是新奥尔良
  • 脱氧鸟苷二磷酸去氧鸟苷二磷酸(Deoxyguanosine diphosphate;dGDP)是较为常见的核酸GTP之衍生物,比GTP少了一个位在五碳糖2号碳上的-OH基,含有两个磷酸基团。
  • 古地磁学古地磁学(或称古磁学),作为地磁学的一个分支,是研究史前地质、地球磁场变化与强度的一门科学。该门学科研究的目的,主要在于得知地球形成时残留于岩层的磁场讯息,再配合其他资料来
  • 戴维·卡达赫特戴维·卡达赫特(英语:David Calderhead,1864年6月19日生于赫尔福德-1938年1月9日逝于伦敦)是一位苏格兰足球运动员,后来成为著名俱乐部切尔西的主教练。卡达赫特是一名中路防守球
  • 耳坠草耳坠草(Sedum rubrotinctum)又名虹之玉,英文俗称Pork and Beans。景天科景天属植物,外表有翠绿色的长棍状叶子。叶片能储存水分,故可耐旱。原产地为墨西哥。虹之玉的叶子长度只有
  • 唐·诺曼唐纳德·亚瑟·诺曼(英语:Donald Arthur Norman,1935年12月25日-)英文常简称为Don Norman,中文有时也译为唐纳·诺曼或唐纳德·诺曼,美国认知科学,人因工程等设计领域的著名学者,也是
  • 相田裕相田裕(日语:あいだ ゆう,1977年11月8日-),日本漫画家、插画家。毕业于明治大学。代表作为《GUNSLINGER GIRL》,他本人也在此作的动画第二期中担任监修、系列设定等工作。