柯伊伯带

✍ dations ◷ 2024-11-05 18:55:09 #柯伊伯带
柯伊伯带(英语:Kuiper belt),又称作伦纳德-柯伊伯带,另译柯伊伯带、古柏带,是位于太阳系的海王星轨道(距离太阳约30天文单位)外侧,在黄道面附近的天体密集圆盘状区域。柯伊伯带的假说最先由美国天文学家弗雷德里克·伦纳德提出,十几年后杰拉德·柯伊伯证实了该观点。柯伊伯带类似于小行星带,但范围大得多,它比小行星带宽20倍且重20至200倍。如同主小行星带,它主要包含小天体或太阳系形成的遗迹。虽然大多数小行星主要是岩石和金属构成的,但大部分柯伊伯带天体在很大程度上由冷冻的挥发成分(称为“冰”),如甲烷、氨和水组成。柯伊伯带至少有三颗矮行星:冥王星、妊神星和鸟神星。一些太阳系中的卫星,如海王星的海卫一和土星的土卫九,也被认为起源于该区域。柯伊伯带的位置处于距离太阳40至50天文单位的低倾角轨道上。该处过去一直被认为空无一物,是太阳系的尽头所在。但事实上这里满布着直径从数公里到上千公里的冰封微行星。柯伊伯带的起源和确实结构尚未明确,目前的理论推测是其来源于太阳原行星盘上的碎片,这些碎片相互吸引碰撞,但最后只组成了微行星带而非行星,太阳风和物质会在此处减速。柯伊伯带有时被误认为是太阳系的边界,但太阳系还包括向外延伸两光年之远的奥尔特星云。柯伊伯带是短周期彗星,如哈雷彗星,的来源地。自冥王星被发现以来,就有天文学家认为其应该被排除在太阳系的行星之外。由于冥王星的大小和柯伊伯带内大的小行星大小相近,20世纪末更有主张其应被归入柯伊伯带小行星的行列当中;而冥王星的卫星则应被当作是其伴星。2006年8月,国际天文学联合会将冥王星剔出行星类别,并和谷神星与新发现的阋神星一起归入新类型的矮行星。柯伊伯带不应该与假设的奥尔特云相混淆,后者比前者遥远一千倍以上。柯伊伯带内的天体,连同离散盘的成员和任何潜在的奥尔特云天体被统称为海王星外天体(TNOs)。冥王星是在柯伊伯带中最大的天体,而第二知名的大海王星外天体,则是在离散盘的阋神星。1930年发现冥王星之后,很多人都猜测它可能不是该区域内唯一的一颗星体。几十年来,对柯伊伯带是否存在、存在形式一直有各种不同的猜测,但直到1992年才发现其存在的第一个直接证据。对柯伊伯带的本质和数量的各种不同猜想以及不连续性,导致难以确定谁才是最早提出且值得赞许的原创者。最早提出海王星之外还有天体群存在的天文学家是弗雷德里克·查尔斯·伦纳德。在克莱德·汤博于1930年发现冥王星后不久,伦纳德就思索:“冥王星不太可能是海王星外唯一的天体,是否还有一连串的海王星外天体等待被发现,冥王星只是第一颗,其它的成员注定最终还是会被检测到”。就在同一年,天文学家亚敏奥托刘屈那(英语:Armin Otto Leuschner)提出冥王星“可能是有待发现的许多长周期行星之一”。在1943年,肯尼斯·沃斯在英国天文协会期刊上投书假设,在海王星之外的区域,原始太阳星云内的物质在空间内散布得太广泛,因此只能凝聚成较小的天体而难以凝聚成行星。由此,他得出结论:相对较小但大量的天体占据太阳系的行星之外广大的空间,并且,年复一年,它们中的某一个偶然会从它们的球壳游荡到内太阳系,成为拜访太阳系内部的彗星之一。在1951年,杰拉德·柯伊伯于发表在天文物理学期刊上的一篇文章中推测,太阳系在演化的早期,会形成一个类似的圆盘,而且他认为这个狭长的圆盘迄今依然存在。柯伊伯操作它的假说,在他的时代,冥王星被认为和地球一样大小,因此能够将那些小天体抛射至奥尔特云或太阳系之外。柯伊伯的假说是正确的,否则现在就不会有柯伊伯带这个名称。这个假设在其后十年有各种不同的形式。在1962年,物理学家艾利丝泰尔·卡麦伦(英语:Alastair G. W. Cameron)假设在太阳系的边缘有大量的小天体存在。在1964年,弗雷德·惠普尔提出著名且通俗化的彗星脏雪球假说,并假设有一个足够大的彗星带,也许质量大到被认为可以影响天王星的轨道,造成差异而引发对X行星的搜寻。然而,观察结果推翻了这个假说。在1977年,查尔斯·科瓦尔发现轨道介于土星和天王星之间的冰小行星(2060) 查伦。他使用的是与克莱德·汤博在50年前发现冥王星相同,称为闪烁比对器的设备。在 1992年,另一颗小行星(5145) Pholus被发现有着相似的轨道。现在,在木星和海王星之间存在着许多类似彗星的天体,被称为半人马族小行星。半人马小行星的轨道并不稳定,只有数百万年的动力学生存时间。在1977年发现小行星(2060)查伦之后,天文学家就推测有外来的储藏所,经常补充半人马小行星。稍后,从对彗星进一步的研究,发现柯伊伯带存在的证据。已经知道一些彗星的寿命是有限的,因为当它们靠近太阳时,太阳的热会导致挥发性的表面逐渐升华至太空,使它们日渐消蚀。为了在太阳系的有生之年都有彗星的存在,它们就必须经常得到补充。这种补充的区域之一就是奥尔特云,最早是荷兰天文学家欧特在1950年假设的,是超出50,000天文单位之外的一个巨大球壳。奥尔特云被认为是像海尔·波普彗星这种轨道长达数千年的长周期彗星的起源地。然而,还有另一种周期短于200年的彗星族群,像是哈雷彗星,称为短周期彗星或周期彗星。在20世纪的70年代,发现的短周期彗星越来越多,而它们的性质并不符合起源自奥尔特云的说法。来自奥尔特云的天体要成为短周期彗星,它首先要被巨大的行星俘获。在1980年,乌拉圭大学的天文学家茱丽欧安洁费南德兹(英语:Julio Ángel Fernández)首先在皇家天文学会月刊指出,来自奥尔特云被送入内太阳系的600颗彗星,几乎是每一颗短周期彗星,都会被弹入星际空间。他考虑观测到的彗星数量,推测在35至50天文单位之处应该有一个彗星带。接续费南德兹的工作,加拿大研究团队的马丁·邓肯、汤姆·奎因和史考特·特里梅(英语:Scott Tremaine)在1988年大量使用电脑模拟,以确定所有观测到的彗星是否都来自奥尔特云。他们发现奥尔特云不能解释所有的短周期彗星,特别是聚集在黄道平面附近的短周期彗星,而来自奥尔特云的彗星倾向于来自天空中的任意一点。添加入如同费南德兹所描述的一个带,就可以与观测匹配。据说,因为“彗星带”和“柯伊伯带”这两个单词出现在费南德兹论文开头的第一段里,所以特里梅将这个假设的地区命名为柯伊伯带。1987年,当时在麻省理工学院工作的天文学家大卫·朱维特,对于“太阳系外围的明显空虚”越来越疑惑。他鼓励当时的研究生刘丽杏帮助他找到超越冥王星轨道的另一个天体,因为,他对她说,“如果我们不这样做,没有人会。”使用在亚利桑那州基特峰国家天文台和在智利托洛洛山美洲际天文台的望远镜,朱维特和刘丽杏以与克莱德·汤博和查尔斯·科瓦尔几乎相同的方式进行自己的搜索,与进行比较。最后,经过五年的搜索,于1992年8月30日,朱维特和刘丽杏宣布“发现候选的柯伊伯带天体”:小行星15760。半年后,他们在该区域又发现了第二个天体,(181708) 1993 FW。柯伊伯带的复杂结构和精确的起源仍是不清楚的,因此天文学家在等待泛星计划(Pan-STARRS)望远镜巡天的结果,应该会揭露更多目前不知道的柯伊伯带天体,并在测量后对它们有更多的了解。柯伊伯带被认为包含许多微行星,它们是来自环绕着太阳的原行星盘碎片,它们因为未能成功的结合成行星,因而形成较小的天体,最大的直径都小于3,000公里。近代的电脑模拟显示柯伊伯带受到木星和海王星极大的影响,同时也认为即使是天王星或海王星都不是在土星之外的原处形成的,因为只有少许的物质存在于这些地区,因此如此大的天体不太可能在该处形成。换言之,这些行星应该是在离木星较近的地区形成的,但在太阳系早期演化的期间被抛到了外面。1984年,胡利奥·安赫尔·费南德兹(英语:Julio Ángel Fernández)和叶永烜的研究认为与被抛射天体的角动量交换可以造成行星的迁徙。终于,轨道的迁徙到达木星和土星形成2:1共振的确切位置:当木星绕太阳运转两圈,土星正好绕太阳一圈。引力如此的共振所产生的拉力,最终还是打乱了天王星和海王星的轨道,造成它们的位置交换而使海王星向外移动到原始的柯伊伯带,造成了暂时性的混乱。当海王星向外迁徙时,它激发和散射了许多外海王星天体进入更高倾角和更大离心率的轨道。然而,目前的模型仍然不能说明许多分布上的特征,引述其中一篇科学论文的叙述:这问题“继续挑战分析技术和最快速的数值分析软件和硬件”。以最完整的范围,包括远离中心最外侧的区域,柯伊伯带大约从30天文单位伸展到55天文单位。然而,一般认为主要的部分(参考下文)只是从39.5天文单位的2:3共振区域延展到48天文单位的1:2共振区域。柯伊伯带非常的薄,主要集中在黄道平面上下10度的范围内,但还是有许多天体散布在更宽广数倍的空间内。总之,它不像带状而更像花托或甜甜圈(多福饼)。而且,这意味着柯伊伯带对黄道平面有1.86度的倾斜。由于存在着轨道共振,海王星对柯伊伯带的结构产生了重大的作用。在与太阳系年龄比较的时标上,海王星的引力使在某些轨道上的天体不稳定,不是将她们送入内太阳系内,就是逐入离散盘或星际空间内。这在柯伊伯带内制造出一些与小行星带内的柯克伍德空隙相似的空白区域。例如,在40至42天文单位的距离上,没有天体能稳定的存在于这个区间内。无论何时,在这个区间内被观测到的天体,都是最近才进入并且会被移出到其他的空间。大约在~42至~48天文单位,虽然海王星的引力影响已经是微不足道的,而且天体可以几乎不受影响的存在着,这个区域就是所谓的传统柯伊伯带,并且目前观测到的柯伊伯带天体有三分之二在这儿。因为近代第一个被发现的柯伊伯带天体是1992 QB1,因此它被当成这类天体的原型,在柯伊伯带天体的分类上称为QB1天体。传统的柯伊伯带向来是两种不同族群的综合体,第一类是"dynamically cold"的族群,比较像行星:轨道接近圆形,轨道离心率小于0.1,相对于黄道的倾角低于10度(它们的轨道平面贴近黄道面,没有太大的倾斜)。第二类是"dynamically hot"的族群,轨道有较大的倾斜(可以达到30度)。这两类会有这样的名称主要并不是因为温度上的差异,而是以微小的气体做比喻,当它们变热时,会增加它们的相对速度。这两种族群不仅是轨道不同,组成也不同,冷的族群在颜色比热的红,暗示它们在不同的环境形成。热的族群相信是在靠近木星的地区形成,然后被气体巨星抛出。而另一方面,冷的族群虽然也可能是海王星在向外迁徙时清扫出来的,但无论是较近或较远,相信是在比较靠近目前所在的位置形成的。当一个天体的轨道周期与海王星有明确的比率时(这种情况称为平均运动共振),如它们的相对基线是适当的,它们可能被锁定在与海王星同步的运动,以避免受到摄动而使轨道变得不稳定。如果天体在这种正确的轨道上,在实例上,如海王星每绕太阳三周它便会绕行二周,则每当它回到原来的位置时,海王星总比它多运行了半条轨道的距离,因为这时海王星在轨道上绕行了1.5圈。这就是所谓的2:3(3:2)的轨道共振,这种轨道特征的半长轴大约是39.4天文单位,而已知的2:3共振天体,包括冥王星和他的卫星在内,已经超过200个,而这个家族的成员统统归类为冥族小天体。许多冥族小天体,包括冥王星,都会穿越过海王星的轨道,但因为共振的缘故,永远不会与海王星碰撞。 其有一些,像是欧侉尔和伊克西翁的大小,都已经大到可以列入类冥天体的等级。冥族小天体有高的轨道离心率,因此它们当初原本应该不是在现在的位置上,而是因为海王星的轨道迁徙被转换到这儿的。1:2共振(每当海王星转一圈,它才完成半圈)的轨道半长轴相当于47.7天文单位,但数量稀稀落落的,这个族群有时会被称为twotino。较小的共振族群还有3:4、3:5、4:7和2:5.。海王星也有特洛伊小行星,它们位于轨道前方和后方的L4和L5的重力稳定点上。海王星特洛伊有时被称为与海王星1:1共振。海王星特洛伊在它们的轨道上是稳定的,但与被海王星捕获有所不同,它们被认为是沿着轨道上形成的。另外,还没有明确的理由可以解释在半长轴小于39天文单位的距离内缺乏共振的天体。当前被接受的假说是在海王星迁徙时被驱离了,因为这个区域在迁移中是轨道不稳定的地区,因此在这儿的任何天体不是被扫清,就是被重力抛出去。1:2共振之外已知的数量非常少,看起来是个边界,但还不能确定这是传统柯伊伯带外侧的边界,还是只是一个宽阔的空隙。观测到2:5共振的距离大约在55天文单位,被认为在传统柯伊伯带之外;然而,预测上在传统柯伊伯带与共振带之间的大量天体尚未被观测到。早期的柯伊伯带模型认为在50天文单位之外的大天体数量应该增加二个数量级,因此,这突然的数目下降,被称为“柯伊伯断崖”,是完全未被预料到的,并且它的原因至今仍不清楚。伯恩斯坦和屈林(Trilling)等人发现直径在100公里或更大的天体在50天文单位的距离上确实突然减少的证据,并不是观测上造成的偏差。可能的解释是在那个距离上的物质太缺乏或太分散,因此不能成长为较大的天体;或者是后续的过程摧毁了已经形成的天体。日本神户大学的向井正和帕特里克·莱卡维卡(Patryk Lykawka)则主张一个大小有如地球而尚未曾被看见的行星与此有关,并且可能在未来的10年内发现这个天体。2006年1月19日,第一艘以探索柯伊伯带为任务的航天器新视野号发射升空。该任务是由美国西南研究院首席研究员艾伦·斯特恩(英语:Alan Stern)所领导的一个团队提出。新视野号航天器已于2015年7月14日抵达了冥王星,如果条件允许,它将继续对另外尚未确定的柯伊伯带天体继续研究。任何选择的柯伊伯带天体将是40和90公里(25至55英里)的直径,在理想情况下是白色或灰色,与冥王星的偏红颜色有对比。2014年10月15日,NASA宣布发现一些柯伊伯带天体,可能会成为新视野号的研究目标。美国东部标准时2019年1月1日,新视野号在距离太阳43.4天文单位处飞掠名为“天涯海角”的柯伊伯带小行星2014 MU69。到2006年,天文学家们已经解决了被认为是围绕除了太阳之外的九个星的柯伊伯带状结构尘埃盘。序号 · 卫星 · 名称意义小行星族 · 主带 · 近地小行星(阿波罗小行星 · 阿莫尔型小行星 · 阿登型小行星) · 特洛伊小行星(火星特洛伊) · 光谱分类半人马小行星 · 达摩克型小行星 · 海王星特洛伊 · 海王星外天体(独立天体 · 柯伊伯带 · 离散盘 · 奥尔特云)小行星带 · 柯伊伯带木星 · 土星 · 天王星 · 海王星 · 气体环老人增四 · 天仓五 · 显微镜座AU · 天坛座μ · 织女一北落师门 · 贯索四

相关

  • 航空事故航空事故是指航空器因为人为或非人为因素导致事故出现,可以按严重性分为三大类:航空器失事(或称“空难”)(Accident)、航空重大意外(Serious Incident)和航空意外(Incident)。航空器失
  • 脉搏短绌脉搏(英语:Pulse)是体表可触摸到的动脉搏动。人体循环系统由心脏、血管、血液所组成,负责人体氧气、二氧化碳、养分及废物的运送。血液经由心脏的左心室收缩而挤压流入主动脉,随
  • 多发性大动脉炎大动脉炎(Takayasu arteritis,TA)是一种累及主动脉及其主要分支以及肺动脉的慢性进行性非特异炎性疾病:841。疾病由日本医生高安右人(Mikito Takayasu)在1908年首次报告,因此又被
  • 吕根岛吕根岛(德语:Rügen;拉丁语:Rugia)是德国最大的岛屿,位于德国东北部的波罗的海,属于梅克伦堡-前波美拉尼亚州。吕根岛南北最长处为52千米,东西最宽处为41千米,总面积926平方千米,海岸
  • 生殖结节生殖结节(英语:genital tubercle),是存在于生殖系统发育过程中的组织体,形成于哺乳动物胚胎的腹部尾侧区域,是阴茎或阴蒂的原基。人类胎儿生殖结节在妊娠第4周左右形成,到第9周时,可
  • 梅尔刻度梅尔刻度(又称Mel尺度,英语:Mel scale)是一种非线性刻度单位,表示人耳对等距音高(pitch)变化的感官,基于频率定义,由Stanley Smith Stevens(英语:Stevens)、John Volkman(英语:Volkman)
  • 英国皇家海军皇家海军(英语:Royal Navy,缩写为RN),亦称英国皇家海军或英国海军,是英国的首要海上作战部队。9世纪时阿尔弗雷德大帝首先开始使用海上军队,而自14世纪初起英格兰海军开始参与海战
  • 富兰克林研究所The Franklin Institute富兰克林研究所(英语:Franklin Institute)是位于美国费城的一个科学博物馆和科学教育研究中心。富兰克林研究所的名称来自于美国科学家、政治家本杰明·
  • 可塑性淀粉材料可塑性淀粉材料全名为 Plastarch Material (PSM),是一种可生物降解的热塑性塑料。PSM于2005年开始商用。经过酯化、交联、接枝共聚等高分子化学加工工艺制成生物塑胶,通过对
  • 膈膜可以指: