含水量

✍ dations ◷ 2024-07-05 10:18:12 #含水量
含水量(又称水分含量,含湿量)是指某材料中水的多少,该材料可能是指土壤、岩石、陶瓷亦或水果、木头等等。含水量在诸多科技领域中均有广泛应用,它一般用比值来表示,其大小可以从零(完全干燥)到与该材料的孔隙度相同(即含水量达到饱和状态)。含水量通常有体积含水量和重量含水量两种表示方式。体积含水量θ一般定义如下:其中 V w {displaystyle V_{w}} 是水的体积, V wet = V h + V w + V a {displaystyle V_{text{wet}}=V_{h}+V_{w}+V_{a}} 是含水物质的总体积。比如,对于土壤来说 V h {displaystyle V_{h}} 、 V w {displaystyle V_{w}} V a {displaystyle V_{a}} 和分别是土壤颗粒和植物组成、水以及空气的总体积。重量含水量如下定义:其中 m w {displaystyle m_{w}} 是水的质量, m {displaystyle m} 是物质的总质量,通常采用烘干前的总质量:然而在木工、地质技术以及土壤科学等领域,分母一般选用烘干后物质总质量:若要将重量含水量换算为体积含水量,需要将重量含水量乘以物质散比重 S G {displaystyle SG} :在土壤力学和石油工程中,水饱和度 S w {displaystyle S_{w}} 被定义为:其中 ϕ = V v / V {displaystyle phi =V_{v}/V} 是孔隙度, V v {displaystyle V_{v}} 是孔隙体积, V {displaystyle V} 是物质总体积,Sw在0到1之间(即从干燥到饱和),且不可能达到最小和最大值,这只是工程应用中的理想情况。标准化含水量 Θ {displaystyle Theta } (即有效饱和度 S e {displaystyle S_{e}} )由范格鲁切腾定义,没有量纲:其中 θ {displaystyle theta } 是体积含水量; θ r {displaystyle theta _{r}} 是剩余含水量,即 d θ / d h {displaystyle dtheta /dh} 为0时的含水量; θ s {displaystyle theta _{s}} 是饱和含水量,与孔隙度 ϕ {displaystyle phi } 大小相等。含水量可以在已知待测材料体积的情况下直接测量。水的体积可以通过其质量 m w {displaystyle m_{w}} 和密度 ρ w {displaystyle rho _{w}} 进行计算,进而可以用水的体积和材料体积计算体积含水量:其中有些材料(如煤)的体积会随含水量的改变而改变,它们的含水量的计算应依照下述公式:土工学中的含水量是以样品干重为分母(常表示为百分数,即含水量 = u×100%):木材的含水量一般在105℃烘干24小时的基础上利用干重进行计算。其他用来确定含水量的方法有化学滴定法(如Karl Fischer titration(英语:Karl Fischer titration))、用冻干法或在惰性气体环境中加热样品来确定质量损失。在食品工业中常用的方法是Dean-Stark method(英语:Dean-Stark method)。根据ASTM(美国材料试验协会)标准年鉴的标准,团聚体中可蒸发的总湿度含量可以用如下公式计算:其中 p {displaystyle p} 是样品总可蒸发水量的比值, W {displaystyle W} 是样品初始质量, D {displaystyle D} 是样品烘干后的质量。可以用来原位检测土壤含水量的地球物理学仪器和方法有好几种,包括时域反射仪(英语:time-domain reflectometry)(TDR)、中子探测器(英语:neutron probe)、频域传感器(英语:frequency domain sensor)、电容探测器(英语:capacitance probe)、幅域反射仪(英语:amplitude domain reflectometry)(ADR)、电阻率层析成像(英语:electrical resistivity tomography)、探地雷达(GPR)以及其他对水敏感的方法。 在农业和其他科学应用领域,地球物理学传感器都比较常用。因为湿润和干燥土壤的介电性质差别很大,我们可以用卫星微波遥感来估计土壤湿度。这些微波辐射对大气变化不敏感,能够穿透云层;此外它们还能穿透一定厚度的植被覆盖层,获取地表信息。根据微波遥感而获取的数据有WindSat, AMSR-E, RADARSAT, ERS-1-2, Metop/ASCAT,都可以用来估计地表湿度。物质中的水可能是吸附在内表面,也可能是被毛细作用力保留在较小孔隙中。在较低湿度下,水的主要保留方式是吸附作用;在较高湿度下,液态水越来越重要,是否依赖于孔隙大小是影响体积的一个重要指标。在木质材料中,低于98%相对湿度时的水几乎都是吸附水。在生物学领域,吸附水和自由水的生物学应用也迥然不同——物理吸附水很难从生物材料中被分离。物理吸附水是否会被算到含水量中可能会受到用来确定含水量的方法的影响。为了更好地区分自由水和结合水,在讨论时,必须要考虑水的活性。水分子可能也会和材料紧紧结合在一起,形成结晶水,比如蛋白质结构中的水就是其固定的组成部分。在土壤学、水文学和农业科学中,水含量对地下水补给(英语:Groundwater recharge)、农业以及土壤化学都具有重要意义。近来许多研究都致力于更好地预测时空变化中的含水量改变。观测结果表明,水含量的空间差异在半干旱地区一般会随总体含水量的增大而增大,在湿润地区一般随总体含水量的增大而减小,在温带地区在中间湿度时达到最大差异。以下是四个常用的标准水含量判定与检测标准:有效含水量(英语:available water content)θa等于:其最小值能达到0.1(砂砾),最大值能达到0.3(泥煤)。当土壤十分干燥时,水分主要是结合在土壤颗粒上,植物获取量减少,蒸发减少。当含水量低于永久凋萎点时,植物因为无法再吸水而枯萎,完全停止蒸发。当土壤水含量太低,无法保证植物生长时,便造成农业干旱(英语:Agricultural drought)。这是灌溉管理的一个重要研究方向。在饱和地下水含水层,所有土壤孔隙都充满了水,(体积含水率与孔隙度相等)。在毛细边缘以上,孔隙中会出现空气。大部分土壤是不饱和的,其土壤含水量要比孔隙度小,它们是通气层的主体。地下潜水面的毛细边缘是饱和与不饱和区域的分界线。在潜水面以上,毛细边缘中的 含水量随深度的减小而减小。在研究通气层时,随之而来的一个现象是,不饱和导水率随含水量的变化而变化。干燥时,由湿润处连接形成的水的路径变少了,导水率随含水量减小的关系不是线性的。水分持留曲线描述体积含水量和多孔介质水势之间的关系,它对于不同的介质都是特异的。根据迟滞现象,会得到润湿过程和干燥过程的差异性曲线。

相关

  • 根霉根霉属(学名:Rhizopus)真菌主要外观特征为具有假根(rhizoid)及匍匐菌丝(stolon)。孢子囊柄(sporangiophore)以单支或数支成束的方式自匍匐菌丝长出,孢子囊柄基部往往与假根基部相对。
  • 焦油焦油旧称溚(英语:tar),是一种黑色的粘稠液体,是有机物经过加热干馏的产物,常见的为用煤炼焦产生的煤焦油,但木材干馏也会产生木焦油,此外泥炭干馏,石油分馏产生的重油也被称为焦油。
  • 三立新闻台三立新闻台(英语:SET News Channel),简称“三立新闻”,是台湾三立电视旗下的电视新闻频道,1998年3月3日开播,是台湾多家24小时即时播出的新闻频道之一。原名SET电视台,后改为SETN,200
  • Sm4f6 6s22, 8, 18, 24, 8, 2蒸气压第一:544.5 kJ·mol−1 第二:1070 kJ·mol−1 第三:2260 kJ·mol主条目:钐的同位素钐是一种化学元素,符号为Sm,原子序数为 62。钐是一种中等硬度
  • 子宫肌瘤子宫肌瘤(Uterine fibroids或是Uterine Fibroma或是leiomyomata)是发生于子宫的平滑肌瘤(英语:Leiomyoma)。若肿瘤生长在肌壁内称肌壁间肌瘤;向子宫腔内生长称粘膜下肌瘤,向子宫浆
  • 苯丙氨酸苯丙氨酸(Phenylalanine,简称Phe或F),是二十种常见氨基酸的一种,化学式为:C6H5CH2CH(NH2)COOH,在室温下为粉末状固体。它是一种必需氨基酸,人体无法自行合成,必须从饮食中摄取。因为
  • 汤匙汤匙(tablespoon,简称tbsp,又译餐桌匙),是一种进食用的匙,以及一个容量单位,其最常见的用途为喝汤,因而得名。汤匙有烹调上也是一种容量量度单位。不同国家对汤匙的标准并不一样,但通
  • 莱姆青柠,又称青柠柠檬,文献中也称来檬、绿檬,是芸香科柑橘属其中数种植物的统称,其果实的特征是淡黄绿色的球形、椭球形或倒卵形,直径约4至5厘米。由于亚热带与热带地区出产的柠檬也
  • 月球距离月球距离 (LD) 是天文学上从地球到月球的距离,从地球到月球的平均距离是384,401公里 (238,856英里)。因为月球在椭圆轨道上运动,实际的距离随时都在变化著。高精准的月球距离
  • 宇宙战争宇宙战争是科幻小说、ACG和特摄片之中,存在于太空和不同星球之间,像是地球人对抗外星人,或是人类分阵营相互交战的战争。《希灵帝国》首发地址: 《希灵帝国》介绍: