首页 >
扭棱十二面体
✍ dations ◷ 2025-11-24 02:03:20 #扭棱十二面体
在几何学中,扭棱十二面体是一种半正多面体,由正三角形和正五边形组成,由于其具有点可递的性质,因此属于阿基米德立体,也是面数最多的阿基米德立体,其对偶多面体为五角化六十面体。这个形状最早是由克普勒以拉丁文命名的,当时克普勒给出的名称为dodecahedron simum,该名称记载于1619的《世界的和谐》。考克斯特利用扭棱十二面体不仅可以由正十二面体扭棱而成,同时也可以用正二十面体扭棱而成,因此称其为扭棱十二・二十面体(snub icosidodecahedron)或扭棱截十二面体。其两种手性镜像中,左旋称为laevo、右旋称为dextro。扭棱十二面体是一种阿基米德立体,为正十二面体(或正二十面体)透过扭棱变换后的结果,在施莱夫利符号中可以用
s
{
5
3
}
{displaystyle sscriptstyle {begin{Bmatrix}5\3end{Bmatrix}}}
或sr{5,3}表示。其具有两个不同的手性几何结构,两者互为镜像,互相组合后可以形成均匀复合体称为二复合扭棱十二面体(英语:Compound of two snub dodecahedra),其凸包为大斜方截半二十面体。扭棱十二面体由92个面、60个顶点和150条边组成,在其92个面中有80个正三角形和12个正五边形;60个顶点中,每个顶点都是4个正三角形和1个正五边形的公共顶点,在顶点图中可以用5.3.3.3.3来表示;150条棱中有60条棱是三角形和五边形的公共棱、90条棱是三角形和三角形的公共棱。若扭棱十二面体边长为1,则其表面积为:体积为:扭棱十二面体有2种二面角,一种是正三角形与正三角形交角,另一种是正三角形与正五边形交角。其中正三角形与正三角形交角角度约为164.175度:而正三角形与正五边形交角的角度约为152.9299度:其中
φ
{displaystyle varphi }
为黄金分割率,约为
1
+
5
2
{displaystyle {frac {1+{sqrt {5}}}{2}}}
;若一扭棱十二面体边长为一,且质心位于原点,则其顶点座标为下列式子的偶置换:扭棱十二面体有3个特殊的正交投影,分别为于面上投影(两种)和于棱上投影(一种),其中“在正三角形面上投影”以及“在正五边形面上投影”其对称性对应于A2 和 H2的考克斯特平面。扭棱十二面体可以透过将正十二面体的正五边形面往外拉,直到完全不接触后,原本的顶点位置填入三角形,剩下的部分用三角形补满来构造。而将正十二面体往外拉时,在某个适当的位置时,原本正五边形与正五边形的公共棱的位置则可以摆上正方形,此时则会构成小斜方截半二十面体。而要产生扭棱的形式则需要在将正五边形面往外拉时稍微有一点旋转,并只用三角形填满空隙,而五边形旋转的方向不同可以产生手性镜像。扭棱十二面体也可以经由大斜方截半二十面体透过交错变换来构造,但构造出的扭棱十二面体并非所有面都是正多边形,其结果称为截角大斜方截半二十面体,其与扭棱十二面体有着相同的拓朴结构。扭棱十二面体是正十二面体(或正二十面体)经过扭棱变换后的结果,其他也是由正二十面体透过康威变换得到的多面体有:扭棱十二面体的顶点为4个正三角形与1个正五边形的公共顶点,顶点图计为3.3.3.3.5,在考克斯特符号中可以用来表示,其中,正五边形可以替换为其他多边形,而构成一个无穷序列。其他顶点图也为4个正三角形与1个正n边形的公共顶点(顶点图:3.3.3.3.n)、考克斯特符号计为的多面体如下表所示。特别地,这些几何形状都具有 (n32) 的旋转对称性,当n为6时,几何体退化成平面的无限面体,为一种半正平面镶嵌,n达到7或以上时,几何结构则成为双曲镶嵌图;而n为2时,其原像退化为三角形二面体,而n为1或更低时,则该形状不存在。在图论的数学领域中,与扭棱十二面体相关的图为扭棱十二面体图,是扭棱十二面体之边与顶点的图(英语:1-skeleton),是一种阿基米德图(英语:Archimedean graph)。由于其可以找到哈密顿回路因此也是一种哈密顿图。
相关
- 独立机构美国联邦政府的独立机构是存在于联邦行政部门(由内阁部长领导)之外的那些机构。然而,大多数独立机构是行政分支的一部分,仅少数是立法或司法分支的一部分。通过由国会通过的单独
- 宪法宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
- 喉前庭喉前庭(laryngeal vestibule)即是声带上方的喉腔部分;其基部或前壁呈现出三角形宽广之形状,而其中心部即会厌结节(楔形结节(英语:cuneiform tubercle);小角结节(英语:corniculate tuber
- 经济观察报《经济观察报》(The Economic Observer)是山东三联集团有限责任公司投资人民币4000万元、2001年4月16日在北京创刊的经济类周报,立报准则是理性、建设性。每逢周一出版发行。目
- 棕榈科棕榈科(学名:Arecaceae)又称槟榔科,棕榈目下的一个科。目前已知棕榈科下有202属,大约2,800余种。本科植物一般是单干直立,不分枝,一般为乔木,也有不少是灌木或藤本植物(如省藤属)。叶
- 静电引力库仑定律(Coulomb's law),法国物理学家查尔斯·库仑于1785年发现,因而命名的一条物理学定律。库仑定律是电学发展史上的第一个定量规律。因此,电学的研究从定性进入定量阶段,是电
- 可萨人可萨人,也译作卡扎人、哈扎尔人,常指一西突厥的属部落,他们的汗国是中世纪初期最大的汗国。最早见于《隋书·北狄传》,《旧唐书·西戎传》和《新唐书·西域传下》称其为“突厥可
- 新能源中国的可再生能源行业的增长速度超过其化石燃料和核电能力。2015年中国成为世界上最大的光伏发电生产国,装机容量为43GW。中国还领导世界生产和使用风能和智能电网技术,生产的
- 科希丘什科起义拉茨瓦维茨 – 华沙 – 维尔纽斯 – 大波兰 – 施切克茨尼 – 海乌姆 – 围攻华沙 – 克鲁普切茨 – 特勒斯波尔 – 马切约维茨 – 普拉加柯斯丘什科
- 刘逢禄刘逢禄(1776年-1829年),字申受,一字申甫,号思误居士。江苏武进(今属常州市)人,清朝翰林,政治人物,儒学学者,专长《春秋公羊传》。逢禄覆书:“后夔典乐,犹有朱、均;吕望陈书,难匡管、蔡。”礼
