扭棱十二面体

✍ dations ◷ 2025-02-23 20:31:20 #扭棱十二面体
在几何学中,扭棱十二面体是一种半正多面体,由正三角形和正五边形组成,由于其具有点可递的性质,因此属于阿基米德立体,也是面数最多的阿基米德立体,其对偶多面体为五角化六十面体。这个形状最早是由克普勒以拉丁文命名的,当时克普勒给出的名称为dodecahedron simum,该名称记载于1619的《世界的和谐》。考克斯特利用扭棱十二面体不仅可以由正十二面体扭棱而成,同时也可以用正二十面体扭棱而成,因此称其为扭棱十二・二十面体(snub icosidodecahedron)或扭棱截十二面体。其两种手性镜像中,左旋称为laevo、右旋称为dextro。扭棱十二面体是一种阿基米德立体,为正十二面体(或正二十面体)透过扭棱变换后的结果,在施莱夫利符号中可以用 s { 5 3 } {displaystyle sscriptstyle {begin{Bmatrix}5\3end{Bmatrix}}} 或sr{5,3}表示。其具有两个不同的手性几何结构,两者互为镜像,互相组合后可以形成均匀复合体称为二复合扭棱十二面体(英语:Compound of two snub dodecahedra),其凸包为大斜方截半二十面体。扭棱十二面体由92个面、60个顶点和150条边组成,在其92个面中有80个正三角形和12个正五边形;60个顶点中,每个顶点都是4个正三角形和1个正五边形的公共顶点,在顶点图中可以用5.3.3.3.3来表示;150条棱中有60条棱是三角形和五边形的公共棱、90条棱是三角形和三角形的公共棱。若扭棱十二面体边长为1,则其表面积为:体积为:扭棱十二面体有2种二面角,一种是正三角形与正三角形交角,另一种是正三角形与正五边形交角。其中正三角形与正三角形交角角度约为164.175度:而正三角形与正五边形交角的角度约为152.9299度:其中 φ {displaystyle varphi } 为黄金分割率,约为 1 + 5 2 {displaystyle {frac {1+{sqrt {5}}}{2}}} ;若一扭棱十二面体边长为一,且质心位于原点,则其顶点座标为下列式子的偶置换:扭棱十二面体有3个特殊的正交投影,分别为于面上投影(两种)和于棱上投影(一种),其中“在正三角形面上投影”以及“在正五边形面上投影”其对称性对应于A2 和 H2的考克斯特平面。扭棱十二面体可以透过将正十二面体的正五边形面往外拉,直到完全不接触后,原本的顶点位置填入三角形,剩下的部分用三角形补满来构造。而将正十二面体往外拉时,在某个适当的位置时,原本正五边形与正五边形的公共棱的位置则可以摆上正方形,此时则会构成小斜方截半二十面体。而要产生扭棱的形式则需要在将正五边形面往外拉时稍微有一点旋转,并只用三角形填满空隙,而五边形旋转的方向不同可以产生手性镜像。扭棱十二面体也可以经由大斜方截半二十面体透过交错变换来构造,但构造出的扭棱十二面体并非所有面都是正多边形,其结果称为截角大斜方截半二十面体,其与扭棱十二面体有着相同的拓朴结构。扭棱十二面体是正十二面体(或正二十面体)经过扭棱变换后的结果,其他也是由正二十面体透过康威变换得到的多面体有:扭棱十二面体的顶点为4个正三角形与1个正五边形的公共顶点,顶点图计为3.3.3.3.5,在考克斯特符号中可以用来表示,其中,正五边形可以替换为其他多边形,而构成一个无穷序列。其他顶点图也为4个正三角形与1个正n边形的公共顶点(顶点图:3.3.3.3.n)、考克斯特符号计为的多面体如下表所示。特别地,这些几何形状都具有 (n32) 的旋转对称性,当n为6时,几何体退化成平面的无限面体,为一种半正平面镶嵌,n达到7或以上时,几何结构则成为双曲镶嵌图;而n为2时,其原像退化为三角形二面体,而n为1或更低时,则该形状不存在。在图论的数学领域中,与扭棱十二面体相关的图为扭棱十二面体图,是扭棱十二面体之边与顶点的图(英语:1-skeleton),是一种阿基米德图(英语:Archimedean graph)。由于其可以找到哈密顿回路因此也是一种哈密顿图。

相关

  • 周期元素周期表中的行称为周期。目前元素周期表有七个周期。同一周期中的元素具有相同的电子层数。随着每一周期从左到右原子序数逐渐增加,电子依如右图的顺序填入各个层及其中的
  • 苏格兰– 欧洲(绿色及深灰色)– 英国(绿色)苏格兰(英语、低地苏格兰语:Scotland,/ˈskɒt.lənd/;苏格兰盖尔语:Alba)是英国下属的构成国之一,位于大不列颠岛北部,英格兰之北,被大西洋环绕包
  • 头部穿孔头部穿孔(Trepanation),又称颅骨穿孔术或环锯术,是一种外科手术干预法,在头皮与头盖骨上钻或挖一个孔,令到头颅的硬膜外露,以处理颅内疾病或其他相关的健康问题。人们相信这种方法
  • 法国国家太空研究中心法国国家空间研究中心(法语:Centre National d'Études Spatiales,缩写:CNES)是隶属于法国政府的航天研究组织,受国防与退伍军人事务部监督,组织类型为公立工商业机构。成立于1961
  • 格波格波(lattice wave)是原子热振动的一种描述。从整体上看,处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波,即晶格的振动模。晶格具有周期性,因此晶格的振
  • 美国三军航空器命名系统1962美国三军航空器命名系统(英语:1962 United States Tri-Service aircraft designation system)是由美国国防部在1962年9月18日为了美国军用航空器所提出的统一化命名系统。
  • 埃万杰利斯塔·托里切利埃万杰利斯塔·托里切利(意大利语:Evangelista Torricelli,又译托里拆利,1608年10月15日-1647年10月25日),意大利物理学兼数学家,以发明气压计而闻名。气压单位托(torr)以他的名字命名
  • NSA美国国家安全局(英语:National Security Agency,缩写:NSA)是美国政府机构中最大的情报部门,专门负责收集和分析外国及本国通讯资料,隶属于美国国防部,是根据美国总统的命令成立的部
  • 钢筋混凝土钢筋混凝土(英语:Reinforced Concrete,Ferroconcrete,RC),工程上常简称为钢筋砼或钢混,是指通过在混凝土中加入钢筋、钢筋网、钢板或纤维而构成的一种组合材料,两者共同工作从而改善
  • 保育物种行政院农业委员会依《野生动物保育法》 公告之保育类野生动物名录,按照族群数量与保护等级,可分为濒临绝种保育类、珍贵稀有保育类及其他应予保育类之野生动物共三大类,内容函