阶跃响应

✍ dations ◷ 2025-08-03 06:25:26 #电子设计,电子学术语,动力系统,控制理论,信号处理,暂态响应特性

阶跃响应是指系统在其输入为单位阶跃函数时,其输出的变化。在电子工程或自动控制领域中,阶跃响应是指系统的输入在很短时间由0变成1时,其输出的时域特性。此概念可以延伸到使用抽象数学概念的动力系统,以演化参数表示其特性。

分析系统的阶跃响应有助于了解系统的特性,因为当输入在长时间稳态后,有快速而大幅度的变化,可以看出系统各个部分的特性。而且也可以知道系统的稳定性。

一统的阶跃响应可以用与以下时域特性的量来描述:

对于线性动态系统来说,从这些特征中可以推知许多该系统的信息。

考虑如右图的RC电路,频域下输出电压Vc和输入电压Vin的关系可表示为下式:

其中 τ = R C {\displaystyle \tau =RC} OL 的主开环放大器和反馈因子为 β 的反馈回路。以下会分析此回授放大器,确认其阶跃响应和控制响应的时间常数之间的关系,也看阶跃响应和回授量之间的关系。

负反馈放大器增益为(见负反馈放大器):

其中

在许多情况下,可以用时间常数 τ 的单一主导极点很好地模拟正向放大器,它的开环增益为:

零频率增益为 0,角频率 ω = 2π。这种正向放大器有单位阶跃响应

是从零到新平衡值 0 的指数趋近。

单极点放大器的传递函数导出闭环增益:

此闭环增益与开环增益是形式相同:均为单极滤波器。其阶跃响应的形式相同:一个趋于新平衡值的指数衰减。但闭环阶跃函数的时间常数为 τ / (1 + β 0),因此因此它比前向放大器的响应快,是其 1 + β 0 倍:

由于反馈因子 β 的增加,阶跃响应会更快,直到最初假设的一个主导极点不再准确。如果有第二个极点,则随着闭环时间常数区域第二个极点的时间常数,需要进行双极点分析。

在开环增益有两个极点的情况下(两个时间常数,τ1和τ2),阶跃响应更为复杂。开环增益为:

零频率增益为 0,角频率 ω = 2π。

双极点放大器的传递函数可以导出闭环增益:

放大器的时间相关性通过切换变量 = ω 很容易发现,于是增益变为:

这个表达式的极点(即分母的零点)位于:

这说明对于足够大 0 平方根就会变成虚数,极点的位置是共轭复数,+;参见图2:

其中

使用极坐标系,根的半径的模为 ||(图2):

而角坐标 φ 为:

拉普拉斯变换表告诉我们这样一个系统的时间响应是由两个函数的组合而成的:

也就是说,解在时间上阻尼振荡。特别是,该系统的单位阶跃响应为:

化简为

0 趋于无穷大时,反馈系数 β 为1。

注意到响应的阻尼是由 ρ 决定的,也就是由开环放大器的时间常数确定的。相反,振荡的频率是由 μ 确定的,也就是由, 通过 β0 由反馈参数确定的。因为 ρ 涉及到时间常数的倒数之和,所以可以发现 ρ 主要受到两个时间常数中的那个影响。

图3显示了参数 μ 取3个不同值时,单元阶跃输入的时间响应。可以看出随着 μ 增加,振荡频率也会增加,但振荡被包含在由指数型函数 和 确定的两条渐近线以内。这两条渐近线是由 ρ 决定的,所以也就由开环放大器的时间常数决定,与反馈无关。

终值的振荡现象被称为振铃。过冲是指摆动最大值高于终值,显然会随着 μ 增加。同样,下冲是指摆动最小值低于终值,同样也会随着 μ 增加。安定时间是指从终值出发,降到低于某个特定水平(终值的10%)用的时间。

稳定时间对 μ 的依赖性不明显,而双极点系统的近似可能不能达到用稳定时间对反馈的依赖性作出现实中的结论的准确性。但渐近线 与 显然影响稳定时间,它们被开环放大器的时间常数控制,特别是在2个时间常数中的时间较短的。这表明开环放大器的设计必须满足稳定时间的规定。

此分析的有两个主要结论:

顺便说一句,可以注意到实际中与线性双极点模型的偏离主要来自两个方面:其一,实际放大器的极点多于两个,零点也是;其二,实际放大器是非线性的,所以它们的阶跃响应会随着信号幅度变换。

以下会说明如何用适当的参数选择来减少过冲。

利用以上的公式,可以将阶跃响应微分找最大值来计算过冲量。其过冲量最大值max 为 :

阶跃响应的终值为1,因此其指数即为过冲量。可以看出若μ = 0,其过冲量为0,也就是:

令 = ( τ1 / τ2 )1 / 2 ,可以求解二个时间常数之间的比例,结果为

因为β 0 >> 1,因此平方根中的1可以省略,得到

换句话说,第一个时间常数需远大于第二个时间常数。有时系统为了一些特性,需要允许一些过冲量,以下的关系中引入一个因子α:

α可以依允许的过冲量来设计。

图4就是描述其程序。比较上图(α = 4)及下图(α = 0.5)可以看出α较小,可以加快响应的速度,但也让过冲量变大。中间的图α = 2为幅度最平坦的滤波器,在波德图上没有尖点。此设计有经验法则内建的安全预度,可以处理像重零点、重极点、非线性(例如和信号幅度相依的特性)及制造的变异,这些都可能造成过大的过冲量。极点摆放位置(也就是α)的调整是频率补偿(英语:frequency compensation)的主题,其中一个方式是极点分离(英语:pole splitting)。

图3中阶跃响应中振铃的幅度是由阻尼因数 exp ( −ρ t ) 决定的。也就是说,如果我们指定出可接受的阶跃响应离终值的偏移量 Δ,即:

在时间长于稳定时间 S 这个前提下,无论 β OL 的值为多少时这个条件都能满足。稳定时间 S 为:

因为过冲的条件,τ1 = OL τ2,因此τ1 >> τ2 成立。一般稳定时间条件是指稳定时间和其单位增益的带宽成反比的情形,原因是1/(2π τ2)接近放大器在典型主极点补偿(英语:Frequency compensation#Dominant-pole compensation)下的带宽。不过此结果比经验法则的结果更准确。例如,若Δ = 1/e4 = 1.8 %,其稳定时间为S = 8 τ2

一般而言,对过冲量的控制会决定二个时间常数的比例,稳定时间S 会决定 τ2

其次,极点比例τ12也和回授放大器的相位裕度有关。图5是二个极点放大器的波德图,频率到第二个极点的位置。图5的假设是频率0 dB在位在1 = 1/(2πτ1)的最小极点及位在2 = 1/(2πτ2)的第二极点之间。如图5所示,若 α ≥ 1,此假设即成立。

利用图5,频率(用0 dB表示)为回路增益 β0满足单位增益或是0 dB条件的位置,可以定义为:

波德增益图中增益下降的斜率是 20 dB/decade,频率每增加十倍,增益下降的比例相同:

相位裕度是频率在0 dB 处,相位和−180°之间的距离,因此裕度为:

因为0 dB / 10 >> 1,有关1的项为90°,因此相位裕度为:

若α = 1,则 φm = 45°,若α = 2,则φm = 63.4°. Sansen建议α = 3,对应的φm = 71.6°“是一种很好的启始条件。”

若τ2缩短,α会增加。稳定时间S 也会减小。若τ1变大,α也会增加,稳定时间会略有变动。若用到极点分离(英语:pole splitting)技巧,τ1和 τ2都会变化。

若放大器有二个以上的极点,图5的波德图仍然可以计算相位裕度,只要将2视为“等效的第二极点”位置即可。

本节以抽象概念下的动态系统(英语:Dynamical system (definition)) S {\displaystyle \textstyle {\mathfrak {S}}} ()为下标。

对于一个线性非时变系统,令 S     S {\displaystyle \textstyle {\mathfrak {S}}\ \equiv \ S} ()和系统冲激响应 () 的卷积来表示:

对线性非时变系统而言就是将后面的式子积分。相对的,对于线性非时变系统,阶跃响应的微分即为冲激响应:

不过此关系在非线性系统或是时变系统并不成立。

对于一个线性非时变系统,其阶跃响应可以用单位阶跃函数()和系统冲激响应 () 的卷积来表示:

相关

  • 文艺复兴运动文艺复兴是一场大致发生在14世纪至17世纪欧洲的文化运动,在中世纪晚期发源于意大利中部的佛罗伦萨,即意大利文艺复兴,后扩展至欧洲各国。其辞源为意大利语“Rinascimento”,由ri
  • 三商巧福三商巧福,是台湾三商企业的牛肉面连锁店。前身是成立于1983年的三商速简餐厅,是台湾第一家台式料理速食餐厅,但因菜色繁多无法达到快速供餐,遂于隔年改为以牛肉面为主力的七七巧
  • 千人计划海外高层次人才引进计划是中国共产党中央委员会组织部、中华人民共和国人力资源和社会保障部主管,中央人才工作协调小组组织实施的计划,计划引进2,000名左右人才,俗称千人计划
  • 柏林工业大学柏林工业大学(德语:Technische Universität Berlin, TU Berlin,或译“柏林理工大学”、“柏林科技大学”)是柏林市的四所大学之一,也是柏林州唯一一所理工科大学。主楼建于1884
  • 亚历山大·谢尔盖耶维奇·戈洛温亚历山大·谢尔盖耶维奇·戈洛温(俄语:Александр Сергеевич Головин,拉丁化:Aleksandr Sergeyevich Golovin,1996年5月30日-),是一名俄罗斯足球运动员,现时
  • 南康德站南康德站(韩语:남강덕역)是朝鲜民主主义人民共和国咸镜北道清津市松坪区域的一个铁路车站,属于平罗线和康德线。平罗线康德线
  • 严珠慧严珠慧(越南语:Nghiêm Châu Tuệ/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H"
  • 势阱势阱(英语:Potential well)是一个包围着势能局部极小点的邻域。被势阱捕获的能量无法转化为其它形式的能量(例如能量从重力势阱中逃脱转化为动能),因为它被势阱的局部极低点捕获。
  • 嵯峨美术短期大学嵯峨美术短期大学(日语:嵯峨美術短期大学/さがびじゅつたんきだいがく  *)是一所位于日本京都府京都市右京区的私立短期大学。 
  • 冈田吉夫冈田吉夫(日语:岡田 吉夫/おかだ よしお ,1926年8月11日-2002年6月22日),日本足球运动员,前日本国家足球队成员。从1951年到1954年,他共为日本国家足球队出场7次。2002年6月22日,因心