光合作用发生之前,地球大气中没有氧气。35亿年前,原核生物通过光合作用产生氧气,但氧气氧化了裸露的金属。氧化铁在海底沉积,形成条状铁层。大氧化事件开始5000万年后,大气层中才开始积累氧气。由于此时植物还没有诞生,前寒武纪产氧速率较慢,浓度不到今天的10%。此时氧气浓度波动较大,19亿年前,大气层可能不存在氧气。此时氧气浓度对生命影响较小。寒武纪以后多细胞生物大量繁殖,氧气浓度波动才会使生物大量灭绝。
氧气浓度上升,生命演化逐渐复杂,因为有氧呼吸比无氧呼吸的物质利用率更高。寒武纪以来,大气层氧气浓度在15%到35%之间波动。氧气浓度于3亿年前石炭纪时达到峰值,此时大气氧含量约为35%。氧浓度高的大气使节肢动物体型庞大。虽然人类燃烧化石燃料等活动对二氧化碳大气含量影响显著,但对于氧气的影响微乎其微。
大氧化事件中,大气氧含量猛增,许多厌氧生物因此死亡。氧气浓度变化会改变生物进化的速度,是阿瓦隆大爆发(英语:Avalon explosion)和寒武纪大爆发可能的原因。氧气浓度也会影响动物体型大小和生物多样性。数据显示,大氧化事件后不久,生物数量猛增100倍。氧气浓度也会影响生物体型。石炭纪时期大气氧含量约为35%,节肢动物体型庞大,而石炭纪之后昆虫体型逐渐变小。
一种观点认为,氧浓度上升会加快生物进化的速率。最后一次雪球地球结束时,大气氧含量增加,开始出现多细胞生命。但是这种关联并不明显,理论也遭到质疑。氧浓度较低时,生物尚未进化到可以固氮的阶段,可利用的含氮有机物较少,存在周期性的“氮危机”,海洋可能不适合生物生存。氧气浓度上升只是生物进化的前提之一。氧浓度上升后,动物立即出现,并保存在化石记录中。此外,类似于大气缺氧,海洋缺氮等不适于宏观生命生存的条件,在寒武纪早期和白垩纪晚期时常出现,但是对多细胞生物没有明显的影响。这可能表明在寒武纪以前,海洋沉积物反映大气和地壳的化学组成的方式与现在不同,因为那时没有浮游生物进行物质循环。
富氧大气能更快的风化岩石,促进铁、磷等元素的循环,对物种的新陈代谢、生长繁殖起重要作用。