DCT

✍ dations ◷ 2024-12-23 01:43:59 #DCT
离散余弦变换(英语:discrete cosine transform, DCT)是与傅里叶变换相关的一种变换,类似于离散傅里叶变换,但是只使用实数。离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,这个离散傅里叶变换是对一个实偶函数进行的(因为一个实偶函数的傅里叶变换仍然是一个实偶函数),在有些变形里面需要将输入或者输出的位置移动半个单位(DCT有8种标准类型,其中4种是常见的)。最常用的一种离散余弦变换的类型是下面给出的第二种类型,通常我们所说的离散余弦变换指的就是这种。它的逆,也就是下面给出的第三种类型,通常相应的被称为"反离散余弦变换","逆离散余弦变换"或者"IDCT"。有两个相关的变换,一个是离散正弦变换,它相当于一个长度大概是它两倍的实奇函数的离散傅里叶变换;另一个是改进的离散余弦变换,它相当于对交叠的数据进行离散余弦变换。离散余弦变换,尤其是它的第二种类型,经常被信号处理和图像处理使用,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。这是由于离散余弦变换具有很强的"能量集中"特性:大多数的自然信号(包括声音和图像)的能量都集中在离散余弦变换后的低频部分,而且当信号具有接近马尔可夫过程的统计特性时,离散余弦变换的去相关性接近于K-L变换(Karhunen-Loève变换——它具有最优的去相关性)的性能。例如,在静止图像编码标准JPEG中,在运动图像编码标准MJPEG和MPEG的各个标准中都使用了离散余弦变换。在这些标准制中都使用了二维的第二种类型离散余弦变换,并将结果进行量化之后进行熵编码。这时对应第二种类型离散余弦变换中的n通常是8,并用该公式对每个8x8块的每行进行变换,然后每列进行变换。得到的是一个8x8的变换系数矩阵。其中(0,0)位置的元素就是直流分量,矩阵中的其他元素根据其位置表示不同频率的交流分量。一个类似的变换, 改进的离散余弦变换被用在高级音频编码,Vorbis和MP3音频压缩当中。离散余弦变换也经常被用来使用谱方法来解偏微分方程,这时候离散余弦变换的不同的变量对应着数组两端不同的奇/偶边界条件。形式上来看,离散余弦变换是一个线性的可逆函数 F : R n → R n {displaystyle F:R^{n}rightarrow R^{n}} 其中R是实数集,或者等价的说一个 n × n {displaystyle ntimes n} 的方阵。离散余弦变换有几种变形的形式, 它们都是根据下面的某一个公式把 n {displaystyle n} 个实数 x 0 , … , x n − 1 {displaystyle x_{0},ldots ,x_{n-1}} 变换到另外 n {displaystyle n} 个实数 f 0 , … , f n − 1 {displaystyle f_{0},ldots ,f_{n-1}} 的操作。有些人认为应该将 x 0 {displaystyle x_{0}} 和 x n − 1 {displaystyle x_{n-1}} 乘以 2 {displaystyle {sqrt {2}}} ,相应的将 f 0 {displaystyle f_{0}} 和 f n − 1 {displaystyle f_{n-1}} 乘以 1 2 {displaystyle {frac {1}{sqrt {2}}}} 。这样做的结果是这种DCT-I矩阵变为了正交矩阵(再乘一个系数的话),但是这样就不能直接和一个实偶离散傅里叶变换对应了。一个 n = 5 {displaystyle n=5} 的对实数abcde的DCT-I型变换等价于一个8点的对实数abcdedcb(偶对称)的DFT变换,结果再除以2(对应的,DCT-II~DCT-IV相对等价的DFT有一个半个抽样的位移)。需要指出的是,DCT-I不适用于 n < 2 {displaystyle n<2} 的情况(其它的DCT类型都适用于所有的整数n)。所以,DCT-I暗示的边界条件是: x k {displaystyle x_{k}} 相对于 k = 0 {displaystyle k=0} 点偶对称,并且相对于 k = n − 1 {displaystyle k=n-1} 点偶对称; 对 f m {displaystyle f_{m}} 的情况也类似。DCT-II大概是最常用的一种形式,通常直接被称为DCT。有些人更进一步的将 f 0 {displaystyle f_{0}} 再乘以 1 2 {displaystyle {frac {1}{sqrt {2}}}} (参见下面的DCT-III型的对应修改)。这将使得DCT-II成为正交矩阵(再乘一个系数的话),但是这样就不能直接和一个有半个抽样位移的实偶离散傅里叶变换对应了。所以,DCT-II暗示的边界条件是: x k {displaystyle x_{k}} 相对于 k = − 1 2 {displaystyle k=-{frac {1}{2}}} 点偶对称,并且相对于 k = n − 1 2 {displaystyle k=n-{frac {1}{2}}} 点奇对称; 对 f m {displaystyle f_{m}} 相对于 m = 0 {displaystyle m=0} 点偶对称,并且相对于 m = n {displaystyle m=n} 点奇对称。因为这是DCT-II的逆变换(再乘一个系数的话),这种变形通常被简单的称为逆离散余弦变换。有些人更进一步的将 x 0 {displaystyle x_{0}} 再乘以 2 {displaystyle {sqrt {2}}} (参见上面的DCT-II型的对应修改),这将使得DCT-III成为正交矩阵(再乘一个系数的话),但是这样就不能直接和一个结果有半个抽样位移的实偶离散傅里叶变换对应了。所以,DCT-III暗示的边界条件是: x k {displaystyle x_{k}} 相对于 k = 0 {displaystyle k=0} 点偶对称,并且相对于 k = n {displaystyle k=n} 点奇对称; 对 f m {displaystyle f_{m}} 相对于 m = − 1 2 {displaystyle m=-{frac {1}{2}}} 点偶对称,并且相对于 m = n − 1 2 {displaystyle m=n-{frac {1}{2}}} 点偶对称。DCT-IV对应的矩阵是正交矩阵(再乘一个系数的话)。一种DCT-IV的变形,将不同的变换的数据重叠起来,被称为改进的离散余弦变换。DCT-IV暗示的边界条件是: x k {displaystyle x_{k}} 相对于 k = − 1 2 {displaystyle k=-{frac {1}{2}}} 点偶对称,并且相对于 k = n − 1 2 {displaystyle k=n-{frac {1}{2}}} 点奇对称;对 f m {displaystyle f_{m}} 类似。上面提到的DCT I~IV是和偶数阶的实偶DFT对应的。原则上,还有四种DCT变换(Martucci, 1994)是和奇数阶的实偶DFT对应的,它们在分母中都有一个 n + 1 2 {displaystyle n+{frac {1}{2}}} 的系数。但是在实际应用中,这几种变型很少被用到。最平凡的和奇数阶的实偶DFT对应的DCT是1阶的DCT(1也是奇数),可以说变换只是乘上一个系数 a {displaystyle a} 而已,对应于DCT-V的长度为1的状况。DCT-I的反变换是把DCT-I乘以系数 2 n − 1 {displaystyle {frac {2}{n-1}}} 。 DCT-IV的反变换是把DCT-IV乘以系数 2 n {displaystyle {frac {2}{n}}} 。 DCT-II的反变换是把DCT-III乘以系数 2 n {displaystyle {frac {2}{n}}} ,反之亦然。和离散傅里叶变换类似,变化前面的归一化系数仅仅是常规而已,改变这个系数并不改变变换的性质。例如,有些人喜欢在DCT-II变换的前面乘以 2 n {displaystyle {sqrt {frac {2}{n}}}} ,这样反变换从形式上就和变换更相似,而不需要另外的归一化系数。尽管直接使用公式进行变换需要进行 O ( n 2 ) {displaystyle O(n^{2})} 次操作,但是和快速傅里叶变换类似,我们有复杂度为 O ( n log ⁡ ( n ) ) {displaystyle O(nlog(n))} 的快速算法,这就是常常被称做蝶形变换的一种分解算法。另外一种方法是通过快速傅里叶变换来计算DCT,这时候需要 O ( n ) {displaystyle O(n)} 的预操作和后操作。

相关

  • 声调音位声调轮廓(tone contour)或语调轮廓、声调符号,其意思是指在一种声调语言中,音节的音高如何因为声调之不同而改变。轮廓通常以两个或三个数字表示,或者可以用象形图显示。汉语是声
  • 法国悖论法国悖论是一个流行语,此一词语最早出现在1980年代,是在描述一种似乎矛盾的流行病学观察:法国人饮食中的饱和脂肪相对偏高,可是其冠状动脉心脏疾病(CHD)的发病率却相对偏低,这和普
  • 中国帆船中国帆船,或称中式帆船,是历史上于东洋水域被广泛使用的帆船,可归类为东洋帆船的一种。文献中的中国帆船首次出现于汉朝的《南州异物志》。根据该书描述,汉朝时中国帆船设计4个
  • 运输部坐标:40°6′33″N 125°53′47″E / 40.10917°N 125.89639°E / 40.10917; 125.89639 (Onjong-ri)英国交通部(英语:Department for Transport,通常叫作DfT)是英国负责英格兰海
  • 维克托·安巴楚勉维克托·安巴楚勉(亚美尼亚语:Վիկտոր Համբարձումյան,ISO 9985:Viktor Hambardzumyan,俄化名:Виктор Амазаспович Амбарцумян,俄语
  • 进攻在体育运动中,进攻是指以攻击对手的方式获取得分或进球。该术语亦可以指涉及犯罪事项的策略。一般来说,球队的进攻都会直接打进球门以获取得分,但在美式足球等体育项目中,常见的
  • 刺檗刺檗(学名:Berberis vulgaris)是小檗科小檗属的植物。原产于欧洲中部和南部、北非和西亚等地区,落叶灌木,高达4米。叶长圆状匙形或倒卵形,长2-5厘米,宽1-2厘米。果实可以食用,富含维
  • 胜利阵线胜利阵线(西班牙语:Frente para la Victoria,缩写为FPV)是阿根廷的一个政党联盟。形式上,胜利阵线是正义党的一个内部派别。2003年至2015年,胜利阵线在阿根廷执政。胜利阵线奉行左
  • teratogen畸形学(英语:Teratology)是研究生理上发展缺陷的学科。人们常常认为它就是研究人类先天性障碍的,但是其实畸形学的覆盖面比这个广得多。除了先天发育之外,它也研究其他的生命阶段
  • 巴拉·希萨尔起义 (1979年)阿富汗民主共和国巴拉·希萨尔起义(Bala Hissar uprising)是发生于1979年8月5日的起义,地点是阿富汗喀布尔南部边缘的历史要塞巴拉·希萨尔。叛乱分子以及反叛的阿富汗陆军军官