线性预测是根据已有采样点按照线性函数计算未来某一离散信号的数学方法。
在数字信号处理中,线性预测经常称为线性预测编码(LPC),因此也可以看作是数字滤波器的一部分。在系统分析中,线性预测可以看作是数学建模或者最优化的一部分。
最常见的表示是
其中 ≤ ,其中是信号的自相关,定义为
其中是期望值。在多维情况下,这相当于最小化L2范数。
上面的方程称为normal方程或者Yule-Walker方程,在矩阵形式下这个方程也可以写作
其中自相关矩阵是元素为, = ( − )的对称轮换矩阵(en:circulant matrix),矢量是自相关矢量 = (),矢量是参数矢量。
另外一个更为通用的实现是最小化
其中通常使用的范围是从0到,并且是 ( + 1)×( + 1)矩阵。
参数优化是一个非常广泛的话题,人们已经提出了大量的其它实现方法。
但是,自相关方法仍然是最为常用的方法,例如在GSM标准中的语音编码就在使用这种方法。
矩阵方程 = 的求解计算上工作量很大,高斯消元法求矩阵的逆可能是最为古老的解法了,但是这种方法没有有效地利用和的对称性。一种更快的算法是Norman Levinson在1947年提出的Levinson递归法(en:Levinson recursion),它递归地计算方程的解。后来Delsarte et al.提出了一种称为split Levinson recursion的改进方法,它仅需要一半的乘除计算量,它在随后的递归层面上使用了参数矢量的特殊对称特性。