线性预测

✍ dations ◷ 2025-12-06 02:50:19 #时间序列,信号处理,估计理论,回归分析

线性预测是根据已有采样点按照线性函数计算未来某一离散信号的数学方法。

在数字信号处理中,线性预测经常称为线性预测编码(LPC),因此也可以看作是数字滤波器的一部分。在系统分析中,线性预测可以看作是数学建模或者最优化的一部分。

最常见的表示是

其中 x ^ ( n ) {\displaystyle {\widehat {x}}(n)} ≤ ,其中是信号的自相关,定义为

其中是期望值。在多维情况下,这相当于最小化L2范数。

上面的方程称为normal方程或者Yule-Walker方程,在矩阵形式下这个方程也可以写作

其中自相关矩阵是元素为, = ( − )的对称轮换矩阵(en:circulant matrix),矢量是自相关矢量 = (),矢量是参数矢量。

另外一个更为通用的实现是最小化

其中通常使用 a 0 = 1 {\displaystyle a_{0}=1} 的范围是从0到,并且是 ( + 1)×( + 1)矩阵。

参数优化是一个非常广泛的话题,人们已经提出了大量的其它实现方法。

但是,自相关方法仍然是最为常用的方法,例如在GSM标准中的语音编码就在使用这种方法。

矩阵方程 = 的求解计算上工作量很大,高斯消元法求矩阵的逆可能是最为古老的解法了,但是这种方法没有有效地利用和的对称性。一种更快的算法是Norman Levinson在1947年提出的Levinson递归法(en:Levinson recursion),它递归地计算方程的解。后来Delsarte et al.提出了一种称为split Levinson recursion的改进方法,它仅需要一半的乘除计算量,它在随后的递归层面上使用了参数矢量的特殊对称特性。

相关

  • 大学士大学士,主要是内阁大学士又称殿阁大学士,一般有大学士或协办大学士,为辅助皇帝的高级秘书官。另外,明代左右春坊亦有大学士,故大学士不等于内阁大学士。此外,越南也曾模仿中国,设立
  • ARWU《世界大学学术排名》,简称“上海排名”,为上海软科教育信息咨询有限公司所发表的年度世界大学排名。此排行榜原先由上海交通大学高等教育研究院的世界一流大学研究中心编制及
  • 埃里克·贝齐格埃里克·贝齐格(Eric Betzig,1960年1月13日-),美国神经科学家、发明家、应用物理学家,美国加州大学伯克利分校物理学教授、分子生物学教授。 贝齐格还担任弗吉尼亚州的珍利亚农场
  • 短链脂肪酸短链脂肪酸(Short-chain fatty acids 简称SCFAs)是一组由五个或以下的碳原子组成的饱和脂肪酸。和长链脂肪酸不同,短链脂肪酸是由厌氧细菌或酵母菌进行糖酵解制造出来的,例如
  • 珍妮特·兰金珍妮特·皮克林·兰金(英语:Jeannette Pickering Rankin,1880年6月11日-1973年5月18日),美国政治人物、女性主义者、人权活动家,1916年在蒙大拿州当选众议员,成为美国国会第一位女性
  • 云生花属云生花属(学名:)是风生花科下的一属,有2种,产非洲东部。本属植物不进行光合作用,是一类全寄生植物,寄生于云实亚科植物的体内,花开在寄主的茎干表面。
  • 午夜0时的吻《午夜0时的吻》(日语:午前0時、キスしに来てよ)是由日本漫画家MIKIMOTO凛所创作的日本漫画作品。于《别册FRIEND》(讲谈社)2015年5月号开始进行连载中。单行本目前共发行11卷。
  • 高位沼泽高位沼泽(raised bog),亦称贫营养沼泽,是沼泽发育的后期阶段或称贫瘠化阶段。随着泥炭层的增厚,沼泽中部开始凸起,只接受大气降水补给。由于养料贫乏,富、中型营养的植物完全让位于
  • 甘珠尔甘珠尔(藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomolangm
  • My NintendoMy Nintendo为任天堂于2016年3月17日开始提供的在线会员制网站。在2015年9月30日关闭前会员制服务“club.nintendo”后,任天堂推出此服务作为新会员制网站。