合力

✍ dations ◷ 2025-01-31 13:56:28 #经典力学,力,物理量

如果一个力的作用效果和几个力所产生的作用效果相同时,这个力就是那几个力的合力 。

那几个力就是这个力的分力。

如右图, F {\displaystyle F}

平行四边形法则适用于两个互成角度的共点力上,可以通过以下实验证明:

如图(a)、(b)橡皮带GE在力 F 1 {\displaystyle F_{1}} F 2 {\displaystyle F_{2}} 的共同作用下伸长了OE,在力 R {\displaystyle R} 的作用下,也伸长了OE。它们的作用效果相同,所以 F 1 {\displaystyle F_{1}} F 2 {\displaystyle F_{2}} 的合力为 R {\displaystyle R} 。在力 F 1 {\displaystyle F_{1}} F 2 {\displaystyle F_{2}} R {\displaystyle R} 的方向上各做有向线段,并以一定的标度使 O A {\displaystyle {\vec {OA}}} O B {\displaystyle {\vec {OB}}} O C {\displaystyle {\vec {OC}}} 的长度分别表示这三个力的大小。连接 A C {\displaystyle AC} B C {\displaystyle BC} ,可以证明四边形OABC是平行四边形,OC是它的对角线。

经过大量实验证明,两个互成角度的共点力,它们的合力的大小和方向,可以用表示这两个力的有向线段做邻边做画出的平行四边形的对角线来表示,这就是平行四边形法则。

两个以上的共点力合成时,也可以应用平行四边形法则求它们的合力。方法是先求出任意两个力的合力,再求出这个合力与第三个力的合力,这样继续下去,最后得出的就是这几个多力的合力。

根据平行四边形法则,在其他因素不改变的情况下,合力的大小与二力的夹角成反比。

根据平行四边形法则,可以计算合力的具体大小和方向。

O B C {\displaystyle \bigtriangleup OBC} 中,通过余弦定理,可得:

O C 2 = B C 2 + O B 2 2 B C O B cos ( 180 α ) {\displaystyle OC^{2}=BC^{2}+OB^{2}-2BC\cdot OB\cos {\bigl (}180^{\circ }-\alpha {\bigr )}}

B C = F 1 , O B = F 2 , O C = R {\displaystyle \because BC=F_{1},OB=F_{2},OC=R}

R 2 = F 1 2 + F 2 2 2 F 1 F 2 cos ( 180 α ) {\displaystyle \therefore R^{2}=F_{1}^{2}+F_{2}^{2}-2F_{1}F_{2}\cos {\bigl (}180^{\circ }-\alpha {\bigr )}}

R = F 1 2 + F 2 2 + 2 F 1 F 2 cos a {\displaystyle \therefore R={\sqrt {F_{1}^{2}+F_{2}^{2}+2F_{1}F_{2}\cos a}}}

合力的方向可以用力 R {\displaystyle R} F 2 {\displaystyle F_{2}} 的夹角 φ {\displaystyle \varphi } 表示出来。由 R t O D C {\displaystyle Rt\vartriangle ODC} 可以求 φ {\displaystyle \varphi } 的大小

tan φ = C D O D = C D O B + B D = F 1 sin α F 2 + F 1 cos α {\displaystyle \tan \varphi ={\frac {CD}{OD}}={\frac {CD}{OB+BD}}={\frac {F_{1}\sin \alpha }{F_{2}+F_{1}\cos \alpha }}}

以上两式,就是计算合力的大小与方向的公式。

相关

  • 阿普伽新生儿评分阿普伽新生儿评分(英语:Apgar Score)是美国女医生维珍尼亚·阿普伽(Virginia Apgar)在1952年发明的一种对刚出生的新生婴儿健康状况快速评核方法。阿普伽当时是在美国纽约执业的
  • 反核运动反核运动是一个反对核能应用的社会运动。在各区域与国际上,都有直接行动团体、环保团体或专业人士组织参与反核运动。较大的此种组织有国际防止核战争医生组织、核裁军运动、
  • 中间体化学动力学中,反应中间体指在一个非基元反应中反应物转化为产物过程出现的中间物种。通常,反应中间体的寿命很短,浓度相对反应物和产物也很低,因此不出现在最终产物中。例如,考虑
  • 马兰热省马兰热省位于安哥拉北部,与比耶省、北广萨省、南广萨省、北伦达省、南伦达省、威热省等省份及刚果民主共和国相邻。
  • 苏恭苏敬(599年-674年),又作苏恭,唐代宋(今湖北境内)人。生于隋开皇十九年(599年),曾任朝议郎右监门府长史骑都尉。显庆二年(657年)鉴于陶弘景的《本草经集注》遗误尚多,上疏请修本草,即今之《
  • 埃里克·克莱普顿埃里克·帕特里克·克莱普顿,CBE(英语:Eric Patrick Clapton,1945年3月30日-),英国音乐家、歌手及词曲作家。他曾经获得过18座格莱美奖,是20世纪最成功的音乐家之一,目前唯一获得三个
  • 盾臂龟苏卡达象龟(学名:Centrochelys sulcata)又名非洲盾臂龟、盾臂龟及苏卡塔尔陆龟,原为象龟属,之后被分入Centrochelys属,目前是Centrochelys属下的唯一现存的物种。原产于非洲的撒哈
  • 希波的奥古斯丁希波的奥古斯丁,罗马天主教会官方称希波的奥斯定(拉丁语:Augustinus Hipponensis;英语:Augustine of Hippo)或圣奥思定(英语:Saint Augustine 或 Saint Austin),俗称圣奥古斯丁。原称
  • 刘连仁刘连仁(1913年-2000年9月2日),山东高密人。抗日战争时刘连仁被日本人绑架到日本做苦力。1945年,刘连仁逃到北海道,在山中躲藏12年,1958年1月被1名猎户发现。在中国的交涉下,刘连仁于
  • 2004年12月逝世人物列表2004年逝世人物列表:1月 - 2月 - 3月 - 4月 - 5月 - 6月 - 7月 - 8月 - 9月 - 10月 - 11月 - 12月下面是2004年12月逝世的知名人士列表: