梅兰妮·马丁尼兹

✍ dations ◷ 2025-07-21 15:40:47 #1995年出生,在世人物,美国流行音乐歌手,纽约州人,21世纪美国歌手

梅兰妮·马丁尼兹(Melanie Martinez)是一位美国歌手,作曲家。曾参加过The Voice第三季。现为大西洋唱片歌手,其音乐特色为歌词犀利和歌曲平顺极度反差而获得关注,主要暗喻私生活、犯罪、欺骗、舆论。

在参加The Voice第三季时,以自弹自唱小甜甜布兰妮的Toxic被三位评审按下我要你。分别为亚当·李维、希洛格林(英语:Cee Lo Green)和布雷克·谢尔顿。之后选择亚当·李维作为其教练。在The Voice第三周比赛,她翻唱白线条乐团的〈第七舰队〉。在iTunes投票期间入排名两百名的第十名。

相关

  • 粘质沙雷氏菌黏质沙雷菌(学名:Serratia marcescens)又称灵杆菌,属于耶尔森菌科(英语:Yersiniaceae)沙雷菌属(英语:Serratia),是一种革兰氏阴性、兼性厌氧性杆菌,亦是一种条件致病菌,于1819年在意大利
  • 原始色素体生物原始色素体生物(Archaeplastida)即泛植物,是真核生物的主要群体。包括红藻、绿藻、陆生植物(有胚植物狭义植物)及少量合称为灰胞藻的生物。除了狭义植物以外,这个组的其他生物只具
  • LGBT权利美国对女同性恋、男同性恋、双性恋与跨性别者权益的保障随着时代发展愈趋成熟。根据美国联邦最高法院劳伦斯诉得克萨斯州案判决,同性恋自2003年起已为全国合法;而有关详细规定
  • 元分析统计学上来说,元分析(meta-analysis,或译作后设分析、整合分析、综合分析、统合分析、荟萃分析)是指将多个研究结果整合在一起的统计方法。就用途而言,它是文献回顾的新方法。文
  • 乳房重建乳房重建为一整形手术,目的是为了重整女性乳房的外形,令之看起来跟平常人无异。这有别于隆胸和缩胸,因为在那些情况,病者的乳房除了过大和过小之外,外观并无不妥。常见的乳房重建
  • 不等鞭毛门 (Heterokonta)不等鞭毛总门(学名:Heterokonta)旧为不等鞭毛门,是真核生物的主要演化支之一,已知的下辖物种超过10万个物种,当中大多数属于藻类,从多细胞的大型藻类海带,到单细胞的各种浮游硅藻,这
  • 相关性在概率论和统计学中,相关(Correlation),显示两个随机变量之间线性关系的强度和方向。在统计学中,相关的意义是用来衡量两个变量相对于其相互独立的距离。在这个广义的定义下,有许
  • 上城区上城区是浙江省杭州市辖区,位于市域、市区东北部,中心城区中部偏南,西北连西湖,东南临钱塘江。面积26.06平方千米,是浙江省面积最小的县级行政区。2017年末,户籍人口32.7万,常住人
  • 线性映射向量 · 向量空间  · 行列式  · 矩阵标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹
  • 罗伯特·乌尔罗伯特·乌尔(1951年10月9日 - )是一名美国演员,喜剧演员和作家。Template:EmmyAward ComedyVarietyMusicWriting 1990s