在数学和信号处理中,解析信号(英语:analytic signal)是没有负频率(英语:negative frequency)分量的复值函数。 解析信号的实部和虚部是由希尔伯特变换相关联的实值函数。
实值函数的解析表示是,包含原始函数和它的希尔伯特变换。这种表示促进了许多数学变换的发展。基本的想法是,由于频谱的埃尔米特对称,实值函数的傅里叶变换(或频谱)的负频率成分是多余的。若是不介意处理复值函数的话,这些负频率分量可以丢弃而不损失信息。这使得函数的特定属性更易理解,并促进了调制和解调技术的衍生,如单边带。只要操作的函数没有负频率分量(也就是它仍是“解析函数”),从复数转换回实数就只需要丢弃虚部。解析表示是相量概念的一个推广: 相量限制在时不变的幅度、相位和频率,解析信号允许有时变参数。
若 函数,其傅里叶变换为 分量。而且由于 由负频率分量构成。因此 :
因此,(单位赫兹)为:
瞬时幅度、瞬时相位与频率在一些应用中用于测量和检测的信号的局部特征。信号的解析表示的另一个应用与调制信号的解调有关。极坐标方便将幅度调制和相位(或频率)调制的影响分开,对解调某些种类的信号很有效。
解析信号通常都会在频率上移位(下转换)到 0 Hz,可能会产生负频率分量:
其中 和。复包络不是唯一的;它是由 。但是恢复实值表示不再是简简单单提取实部的问题了。为了避免混叠可能需要上转换,若信号已被(离散时间)采样,还可能需要插值(升采样)。
若选取的 的单边带信号。
有时 瞬时相位 的均方误差:
再或者(对最佳 ):
在信号处理领域,维格纳–威利分布定义中需要解析信号,因此该方法在实际应用中具有理想特性。
有时复包络与复幅度同义;其他时候它作为一种时间无关的推广形式。 它们的关系并不像实值的情形那样;变化的包络(英语:Envelope (waves))产生恒定的幅度。