耦合 (概率)

✍ dations ◷ 2025-09-08 06:03:34 #概率论,多变量统计

关联结构(英语:Copula),处理统计中随机变量相关性问题的一种方法,由一组随机变量的边际分布来确定它们的联合分布。通过关联结构来确定一个联合分布的方法是基于如下思想,一个简单转换可以通过分别将每个边缘分布都转换为平均分布的转换组成。这样,一个关联结构(dependence structure)就可以表达为一个基于上述所得平均分布之上的联合分布,而关联结构(copula)即是边缘均匀随机变量之上的一个联合分布。在实际应用中,上述的转换可能被设置为每个边缘变量的初始化步骤,或者上述转换的参数可能根据具体关联结构的对应参数设置。

按照所表达的关联关系的不同,关联结构被分为很多不同类别。典型情况下,一个种类的关联结构有多个参数用来表达不同的关联强度和关联类型。下面将大概描述一些有代表性的关联结构。关联结构的一个典型应用是,通过选择某一种类的关联结构来定义某一适合特定样本数据分布的联合分布,当然关联结构也可以来自于任何相应的给定联合分布。

考察两个随机变量,,分别具有连续累积分布函数。通过分别在两个随机变量上应用概率积分转换,得到 = () 和 = ()。因此和都是具有连续均匀分布的变量,相关性通常取决于和是否是相关(自然,如果和是不相关的,那么和也是不相关的)。因为这个转换是可逆的,可以定义和之间的相关性等于和之间的相关性。因为和是均匀分布的随机变量,所以问题被简化为定义一个在两个均匀分布之上的二项分布,这就是关联结构。所以,这一基本思想就是,通过把边缘变量转化为均匀分布变量而不再需要考察很多不同的边缘分布以简化问题,然后再把相关性定义为一个在均匀分布之上的联合分布。

一个 关联结构是一个定义在维单位立方体上的多元联合分布,其每个边缘分布都是在区间上的均匀分布。

特别的, C : n {\displaystyle C:^{n}\to } 维关联结构,有

其中 N ( z ) = card { k z k = x k } {\displaystyle N(\mathbf {z} )=\operatorname {card} \{k\mid z_{k}=x_{k}\}} -体积(volume)。

由Sklar提出的这条定理是大多数关联结构的应用的基础。Sklar定理指出,一个给定的个变量的联合分布函数,, ,,...为其边缘分布函数,必存在这样一个关联结构使 = (, ,,...

以二项分布为例,Sklar定理应用如下。对任一二项分布函数(, ),令() = (, ∞) 而() = (∞, ) 为其单变量边缘概率分布函数。那么存在关联结构以使

(此处已知分布和它的累积分布函数)。此外,如果边缘分布() 和()连续,那么关联结构函数是唯一的。否则,关联结构在边缘分布的值域上是唯一确定的。

最小(反单调)关联结构:是所有关联结构的下边界。仅在二项分布中,变量间表现为完全负相关。

对-元关联结构,下边界为

最大 (共单调 ) 关联结构:是所有关联结构的上边界。其在二项分布中,变量间表现为完全正相关:

对-元关联结构,上边界为

结论:对所有关联结构(, ),

对于多元关联的情况为

在金融建模中常用到的一个关联结构是正态关联结构,正态关联结构是根据Sklar定理由二元正态分布构成。设 Φ ρ {\displaystyle \Phi _{\rho }} ,则正态关联结构函数为

其中, u , v {\displaystyle u,v\in } 微分得出关联结构的密度函数:

其中

是皮尔逊矩相关系数为标准二元正态分布的概率密度函数,其标准正态密度为 φ {\displaystyle \varphi }

相关

  • 粪小杆线虫粪小杆线虫(学名:Strongyloides stercoralis,俗名:threadworm(美)。又称粪线虫)是一种在人类身上的线虫(寄生虫),会导致粪线虫感染症(英语:Strongyloidiasis)。。粪小杆线虫可以寄宿
  • 前列腺素E前列腺素E(Prostaglandin E)是一系列自然合成的前列腺素,且可用于药用种类包含前列腺素E是经由前列腺素E合成(英语:prostaglandin E synthase)途径制造。本类化合物名列世界卫生组
  • 花神花神可以指:
  • 比较法学比较法,是法学学科,研究比较当今世界各种法律的异同,包括普通法、欧陆法系、社会主义法、沙里亚法规、印度法系、中华法系及大清律例等。《比较法研究》是中国政法大学1987年1
  • ISO 3166ISO 3166是国际标准化组织(ISO)针对国家、地区、具特殊科学价值地点,以及其子行政区(如:省或州)名称的国际标准代码。该标准正式英文全称为:“Codes for the representation of nam
  • 德寿宫德寿宫是朝鲜王朝最后的宫殿,位于大韩民国首尔市,宫内有许多朝鲜早期的欧式建筑。德寿宫最早作为成宗之兄月山大君的宅邸而建。壬辰倭乱时,居住在这里的是月山大君的后代李琉、
  • 基纳巴卢山猪笼草基纳巴卢山猪笼草(学名:)是由马来王猪笼草()和长毛猪笼草()杂交得到的自然杂交种。1910年,莉莲·苏泽特·吉布斯在堪巴兰格附近首次采集到了基纳巴卢山猪笼草。1914年,约翰·缪尔黑德
  • 尚特奈圣伊姆贝尔尚特奈圣伊姆贝尔(法语:Chantenay-Saint-Imbert)是法国涅夫勒省的一个市镇,属于讷韦尔区(Nevers)圣皮耶尔勒穆蒂耶县(Saint-Pierre-le-Moûtier)。该市镇总面积41.69平方公里,2009年
  • 财前直见财前直见(1966年1月10日-)是日本大分县大分市出生的女演员。
  • 库蚊属家蚊属(学名:),别称库蚊属, 是蚊科的一个属,种类包括了尖音库蚊()、致倦库蚊()、三带喙库蚊(,又名三斑库蚊)、环状库蚊、地下库蚊()。幼虫静止时垂直悬浮只有呼吸管在水面。成虫翼部水平展