耦合 (概率)

✍ dations ◷ 2025-11-19 09:36:55 #概率论,多变量统计

关联结构(英语:Copula),处理统计中随机变量相关性问题的一种方法,由一组随机变量的边际分布来确定它们的联合分布。通过关联结构来确定一个联合分布的方法是基于如下思想,一个简单转换可以通过分别将每个边缘分布都转换为平均分布的转换组成。这样,一个关联结构(dependence structure)就可以表达为一个基于上述所得平均分布之上的联合分布,而关联结构(copula)即是边缘均匀随机变量之上的一个联合分布。在实际应用中,上述的转换可能被设置为每个边缘变量的初始化步骤,或者上述转换的参数可能根据具体关联结构的对应参数设置。

按照所表达的关联关系的不同,关联结构被分为很多不同类别。典型情况下,一个种类的关联结构有多个参数用来表达不同的关联强度和关联类型。下面将大概描述一些有代表性的关联结构。关联结构的一个典型应用是,通过选择某一种类的关联结构来定义某一适合特定样本数据分布的联合分布,当然关联结构也可以来自于任何相应的给定联合分布。

考察两个随机变量,,分别具有连续累积分布函数。通过分别在两个随机变量上应用概率积分转换,得到 = () 和 = ()。因此和都是具有连续均匀分布的变量,相关性通常取决于和是否是相关(自然,如果和是不相关的,那么和也是不相关的)。因为这个转换是可逆的,可以定义和之间的相关性等于和之间的相关性。因为和是均匀分布的随机变量,所以问题被简化为定义一个在两个均匀分布之上的二项分布,这就是关联结构。所以,这一基本思想就是,通过把边缘变量转化为均匀分布变量而不再需要考察很多不同的边缘分布以简化问题,然后再把相关性定义为一个在均匀分布之上的联合分布。

一个 关联结构是一个定义在维单位立方体上的多元联合分布,其每个边缘分布都是在区间上的均匀分布。

特别的, C : n {\displaystyle C:^{n}\to } 维关联结构,有

其中 N ( z ) = card { k z k = x k } {\displaystyle N(\mathbf {z} )=\operatorname {card} \{k\mid z_{k}=x_{k}\}} -体积(volume)。

由Sklar提出的这条定理是大多数关联结构的应用的基础。Sklar定理指出,一个给定的个变量的联合分布函数,, ,,...为其边缘分布函数,必存在这样一个关联结构使 = (, ,,...

以二项分布为例,Sklar定理应用如下。对任一二项分布函数(, ),令() = (, ∞) 而() = (∞, ) 为其单变量边缘概率分布函数。那么存在关联结构以使

(此处已知分布和它的累积分布函数)。此外,如果边缘分布() 和()连续,那么关联结构函数是唯一的。否则,关联结构在边缘分布的值域上是唯一确定的。

最小(反单调)关联结构:是所有关联结构的下边界。仅在二项分布中,变量间表现为完全负相关。

对-元关联结构,下边界为

最大 (共单调 ) 关联结构:是所有关联结构的上边界。其在二项分布中,变量间表现为完全正相关:

对-元关联结构,上边界为

结论:对所有关联结构(, ),

对于多元关联的情况为

在金融建模中常用到的一个关联结构是正态关联结构,正态关联结构是根据Sklar定理由二元正态分布构成。设 Φ ρ {\displaystyle \Phi _{\rho }} ,则正态关联结构函数为

其中, u , v {\displaystyle u,v\in } 微分得出关联结构的密度函数:

其中

是皮尔逊矩相关系数为标准二元正态分布的概率密度函数,其标准正态密度为 φ {\displaystyle \varphi }

相关

  • 22iR-羟基胆固醇22R-羟基胆固醇(英语:22R-Hydroxycholesterol)是一种内源性的胆固醇代谢中间产物,参与甾体激素的生物合成。 胆固醇被细胞色素P450家族的CYP11A1胆固醇侧链裂解酶(P450scc)羟基化
  • 十大弟子十大弟子是佛陀在世时十个主要弟子。
  • 纯种马纯种马(英文:Thoroughbred)是一种为了赛马而刻意培育出来的马的品种。虽然广义的“纯种马”也可以指任何同一品种交配所生的马,但在育马和赛马中所称的“纯种马”一般只指这一种
  • 台湾士林地方法院坐标:25°06′43″N 121°32′01″E / 25.111875°N 121.533485°E / 25.111875; 121.53348511154台北市士林区士东路190号电话:(02)2831-2321 内湖民事办公大楼及内湖简易庭:1
  • 叶菲姆·泽尔曼诺夫叶菲姆·伊萨科维奇·泽尔曼诺夫(俄语: Ефи́м Исаа́кович Зе́льманов,罗马化:Efim Isaakovich Zelmanov,1955年09月7日-),俄罗斯数学家。主要工作涉及非结
  • 卡西·阿弗莱克凯洛柏·卡西·麦奎尔·阿弗莱克-博尔特(英语:Caleb Casey McGuire Affleck-Boldt,1975年8月12日-)或简称卡西·阿弗莱克(英语:Casey Affleck),是一名美国男演员和导演。他常与演员及
  • 兴尼雅兴尼雅(满语:ᡥᡳᠩᠨᡳᠶᠠ,转写:),又作兴尼牙,乌拉那拉氏,明朝呕罕河卫都督固森桑古鲁曾孙、乌拉国萨尔达城主、号贝勒,为乌拉国主同族,曾尝试夺取国主之位,事败后投靠叶赫、后又逃往
  • 李紫婷李紫婷(2000年1月20日-),本名彭威莱·李诗里洛(泰语:พร้อมวิไล หลี่ศิริโรจน์,皇家转写:Promwilai Leesiriroj),艺名Mimi(泰语:มีมี่),出生于泰国曼谷,泰籍华裔
  • 约旦国王万岁《约旦国王万岁》(阿拉伯语:السلام الملكي الأردني‎),又译《约旦王室颂》、《向约旦王室致敬》,是约旦的国歌兼王室颂歌,词作者阿卜杜勒·莫奈姆·勒法伊(عب
  • 杨摛藻杨摛藻(19世纪-1863年),号朴庵,安徽石埭县(今池州市石台县)人。清朝官员。著名佛学家杨仁山之父。杨摛藻自少年即勤于学,道光十八年(1838年)考中三甲进士,与曾国藩同榜。授刑部主事。杨