耦合 (概率)

✍ dations ◷ 2025-07-15 05:54:03 #概率论,多变量统计

关联结构(英语:Copula),处理统计中随机变量相关性问题的一种方法,由一组随机变量的边际分布来确定它们的联合分布。通过关联结构来确定一个联合分布的方法是基于如下思想,一个简单转换可以通过分别将每个边缘分布都转换为平均分布的转换组成。这样,一个关联结构(dependence structure)就可以表达为一个基于上述所得平均分布之上的联合分布,而关联结构(copula)即是边缘均匀随机变量之上的一个联合分布。在实际应用中,上述的转换可能被设置为每个边缘变量的初始化步骤,或者上述转换的参数可能根据具体关联结构的对应参数设置。

按照所表达的关联关系的不同,关联结构被分为很多不同类别。典型情况下,一个种类的关联结构有多个参数用来表达不同的关联强度和关联类型。下面将大概描述一些有代表性的关联结构。关联结构的一个典型应用是,通过选择某一种类的关联结构来定义某一适合特定样本数据分布的联合分布,当然关联结构也可以来自于任何相应的给定联合分布。

考察两个随机变量,,分别具有连续累积分布函数。通过分别在两个随机变量上应用概率积分转换,得到 = () 和 = ()。因此和都是具有连续均匀分布的变量,相关性通常取决于和是否是相关(自然,如果和是不相关的,那么和也是不相关的)。因为这个转换是可逆的,可以定义和之间的相关性等于和之间的相关性。因为和是均匀分布的随机变量,所以问题被简化为定义一个在两个均匀分布之上的二项分布,这就是关联结构。所以,这一基本思想就是,通过把边缘变量转化为均匀分布变量而不再需要考察很多不同的边缘分布以简化问题,然后再把相关性定义为一个在均匀分布之上的联合分布。

一个 关联结构是一个定义在维单位立方体上的多元联合分布,其每个边缘分布都是在区间上的均匀分布。

特别的, C : n {\displaystyle C:^{n}\to } 维关联结构,有

其中 N ( z ) = card { k z k = x k } {\displaystyle N(\mathbf {z} )=\operatorname {card} \{k\mid z_{k}=x_{k}\}} -体积(volume)。

由Sklar提出的这条定理是大多数关联结构的应用的基础。Sklar定理指出,一个给定的个变量的联合分布函数,, ,,...为其边缘分布函数,必存在这样一个关联结构使 = (, ,,...

以二项分布为例,Sklar定理应用如下。对任一二项分布函数(, ),令() = (, ∞) 而() = (∞, ) 为其单变量边缘概率分布函数。那么存在关联结构以使

(此处已知分布和它的累积分布函数)。此外,如果边缘分布() 和()连续,那么关联结构函数是唯一的。否则,关联结构在边缘分布的值域上是唯一确定的。

最小(反单调)关联结构:是所有关联结构的下边界。仅在二项分布中,变量间表现为完全负相关。

对-元关联结构,下边界为

最大 (共单调 ) 关联结构:是所有关联结构的上边界。其在二项分布中,变量间表现为完全正相关:

对-元关联结构,上边界为

结论:对所有关联结构(, ),

对于多元关联的情况为

在金融建模中常用到的一个关联结构是正态关联结构,正态关联结构是根据Sklar定理由二元正态分布构成。设 Φ ρ {\displaystyle \Phi _{\rho }} ,则正态关联结构函数为

其中, u , v {\displaystyle u,v\in } 微分得出关联结构的密度函数:

其中

是皮尔逊矩相关系数为标准二元正态分布的概率密度函数,其标准正态密度为 φ {\displaystyle \varphi }

相关

  • 马蒂亚斯·许莱登马蒂亚斯·雅各布·施莱登(Matthias Jakob Schleiden,1804年4月5日-1881年6月23日)是一位德国植物学家,细胞学说的建立者之一。他出生于德国汉堡,大学时原本研读法律,但后来转向其
  • 鄂木斯克鄂木斯克(俄语:Омск)位于俄罗斯西伯利亚西南部,是鄂木斯克州的首府,也是西伯利亚联邦管区的第二大城市,全国第八大城市,2018年人口1,172,070人。该市距离莫斯科2,235公里。在俄
  • 圣母无原罪主教座堂圣母无原罪主教座堂位于台湾台北市大同区,为天主教台北总教区的主教座堂,也是台北市首座天主教堂;由于座落于民生西路,亦名民生西路天主堂。教堂附设有一幼稚园,教堂建地并与同为
  • 2020年3月中旬除特别注明外,本文所有时间均以东九区时间(UTC+9)为准。
  • 起源号起源号探测器(Genesis)是美国2001年发射的一个空间探测器,主要目的是搜集太阳风粒子,以解开有关太阳系的起源和演化等方面的问题,总投资约2.6亿美元。起源号探测器的主要装备是5
  • 戴维·李可以指:
  • 亲鸾奖亲鸾奖(日语:親鸞賞/しんらんしょう)以日本镰仓时代著名佛教僧人亲鸾的名字命名的文学奖,由本愿寺文化兴隆财团(日语:本願寺文化興隆財団)颁奖,2000年首次颁奖,每二年一届,奖金200万日
  • 刺猬大作战刺猬大作战(Hedgewars)是一个2D版本百战天虫模式的回合制策略游戏。Hedgewars被苹果电脑官方网站收录。这个游戏是使用GPL协议的自由软件。游戏引擎用Free Pascal写成,GUI用C++
  • 薄荷茱莉普一枝薄荷薄荷茱莉普是一种由波本威士忌、糖、水、碎冰或刨冰和新鲜薄荷制成的鸡尾酒。作为一种以波旁酒为基酒的鸡尾酒,它与美国南部的美食有关,特别是肯塔基德比赛马大赛。薄
  • 李昭李昭可以是下列人物: