对立事件

✍ dations ◷ 2025-07-19 06:50:52 #对立事件
在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是不可数之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。假设我们有一堆52张的扑克牌,并闭着眼睛在这堆牌中抽取一张牌,那么用概率论的术语来说,我们实际上是在做一个随机试验。这时,我们的样本空间是一个有着52个元素的集合,因为任意一张牌都是一个可能的结果。而一个随机事件,则是这个样本空间的任意一个子集(这个任意子集包括空集,一个元素的集合及多个元素的集合)。运用组合知识可以知道,随机事件一共有 2 52 {displaystyle 2^{52}} 种。当这个事件仅仅包括样本空间的一个元素(或者说它是一个单元素集合)的时候,称这个事件为一个基本事件。比如说事件“抽到的牌是黑桃7”。当事件是空集时,称这个事件为不可能事件。当事件是全集时,则称事件是必然事件。其它还有各种各样的事件,比如:由于事件是样本空间的子集,所以也可以写成集合的形式。有时候写成集合的形式可能会很困难。有时候也可以用文氏图来表示事件,这时可以用事件所代表图形的面积来按比例显示事件的概率。当样本空间有限,试验中每个基本事件发生的可能性相同的时候,称为古典概型。这时可以(也是一般用到的)取样本空间的所有的子集作为事件。然而,当样本空间不是有限的时候,特别是当样本空间是实数的时候,就不能取所有的子集作为事件了。其中的根本原因在于概率的定义。一般来说,当研究一个随机事件的时候,我们希望知道它发生的概率。事件发生的概率是一个介于0和1之间的数。当样本空间是不可数的时候,如果我们取样本空间所有的子集,那么概率论的公理系统会产生数学上的矛盾,也就是说,会有一些子集无法被定义概率。具体地说,概率论的公理系统是由三个部分 ( Σ , F , P ) {displaystyle (Sigma ,{mathcal {F}},mathbb {P} )} 组成的,又称为概率空间。这个空间包括:样本空间 Σ {displaystyle Sigma } 、事件集合 F {displaystyle {mathcal {F}}} (又称为事件体)以及定义在这上面的一个取概率的运算: P {displaystyle mathbb {P} } 。其中的事件集合 F {displaystyle {mathcal {F}}} 是一个σ-代数,而取概率的运算 P {displaystyle mathbb {P} } 需要满足概率的加法公理(σ-Additive):这个公理是符合一般人的直觉的:如果几件事情互相之间相互排斥,那么“它们几个中有一个发生”的概率应该等于其中每一个发生的概率的和。然而,对于不可数的样本空间,如果选全部的子集作为事件的话,会有一些子集,无论怎样为他们定义概率,都会违反加法公理。假设小明和小华玩一个游戏,让小华随意说一个0到1之间的实数。小明为了研究概率,选择了所有的子集作为概率集合。他将所有的0到1之间的有理数取出来。由于0到1之间的有理数是可数集合,所以可以做标号: q 1 , q 2 , ⋯ {displaystyle q_{1},q_{2},cdots } 。对于每一个0到1之间的实数 a {displaystyle a} ,小明将 a + q 1 , a + q 2 , ⋯ {displaystyle a+q_{1},a+q_{2},cdots } 作为一个集合,如果其中有大于1的,就减去1。这个集合是由可数个数构成的,小明把它记作 S a {displaystyle S_{a}} 。构造多个这样的集合 S a {displaystyle S_{a}} 满足其并集是区间,且它们之间两两不相交。然后将每个 S a {displaystyle S_{a}} 写成:再令:那么所得到的事件(也就是集合) T 1 , T 2 , ⋯ {displaystyle T_{1},T_{2},cdots } 的并集也是区间,而且它们之间两两不相交。由于这些事件之间地位相等,所以它们的概率 P ( T n ) {displaystyle mathbb {P} (T_{n})} 都是一样的。 如果 P ( T n ) > 0 {displaystyle mathbb {P} (T_{n})>0} ,那么根据加法原则,而如果 P ( T n ) = 0 {displaystyle mathbb {P} (T_{n})=0} ,那么根据加法原则,仍然有:因此无论如何,都会导致矛盾。也就是说小明无法为事件 T 1 {displaystyle T_{1}} 定出一个概率。在一般的测度理论中,这种集合称为(勒贝格)不可测集合。两个随机事件之间可以有各种各样的关系。如果两个事件同时发生的概率等于它们各自发生的概率的乘积,那么就称这两个事件是相互独立的。比如说,“抽到的牌是红桃”和“抽到的牌数字是4”就是相互独立的,因为两者同时发生——抽到的牌是红桃4——的概率是52分之1,而“抽到的牌是红桃”的概率是4分之1,“抽到的牌数字是4”的概率是13分之1,两者相乘便是52分之1。在概率运算时,还有:

相关

  • 耐氧厌氧生物厌氧生物,或称厌气生物,是指一种不需要氧气生长的生物。它们大致上可以分为三种,即专性厌氧生物、兼性厌氧生物及耐氧厌氧生物 。人体内的厌氧生物多存在于消化系统中,有些种类
  • 技术史技术史记录了人类各种技术革新和重大发明的历史。人类发明的各种新技术可以帮助人类更好地了解自然和宇宙,使人类生活的更为方便和舒适,技术的发展是经济发展的产物,反过来也是
  • 种子植物种子植物是由可产生种子的植物所组成的,有胚植物的一个子类群。它是所有植物中最进化的一个物种。无论在物种数量和地理分布也是最多最广的。现存的种子植物可以分为五种类群
  • 化能生物化能生物(英语:Chemotroph),其中化能菌又分为(异养菌)和(自养菌)两大类。前者靠氧化有机物取得能量,后者则靠氧化无机物获取能量。化能生物种类繁多,从蠕虫到鱼类应有尽有。
  • 冂部,就汉字索引来说,是为部首之一,康熙字典214个部首中的第十三个(两划的则为第七个)。冂部归于二划部首,通常是从上方或下方为部,且无其他部首可用者将部首归为冂部。坰的本字,即
  • 壬戌学制壬戌学制于1922年11月由北洋政府颁行,其提案为《学校系统改革案》。也称“1922年学制”,因这一年为旧历壬戌年,所以又称“壬戌学制”,为了有别于“壬子癸丑学制”,也称“新学制”
  • 末日事件世界末日包括以下几种层次:
  • 德国小蠊德国姬蠊(学名:Blattella germanica),亦作德国小蠊,俗称德国蟑螂,是蟑螂的一种,身长多为1.0到1.6厘米,比美洲大蠊小。颜色有浅棕色至深棕色,而且在其前胸有两条由头部至翅膀末端的直
  • 德国表现主义德国表现主义(英语:German Expressionism)是指一些互相关联的德国艺术运动,从一战前开始,在1920年代的柏林到达顶峰。这些运动属于北欧与中欧表现主义运动的一部分,涉及的领域包括
  • 最终解决德国问题条约最终解决德国问题条约(英语:The Treaty on the Final Settlement With Respect to Germany,法语:Traité portant règlement définitif concernant l'Allemagne,俄语:Догов