对立事件

✍ dations ◷ 2025-02-23 20:17:01 #对立事件
在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是不可数之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。假设我们有一堆52张的扑克牌,并闭着眼睛在这堆牌中抽取一张牌,那么用概率论的术语来说,我们实际上是在做一个随机试验。这时,我们的样本空间是一个有着52个元素的集合,因为任意一张牌都是一个可能的结果。而一个随机事件,则是这个样本空间的任意一个子集(这个任意子集包括空集,一个元素的集合及多个元素的集合)。运用组合知识可以知道,随机事件一共有 2 52 {displaystyle 2^{52}} 种。当这个事件仅仅包括样本空间的一个元素(或者说它是一个单元素集合)的时候,称这个事件为一个基本事件。比如说事件“抽到的牌是黑桃7”。当事件是空集时,称这个事件为不可能事件。当事件是全集时,则称事件是必然事件。其它还有各种各样的事件,比如:由于事件是样本空间的子集,所以也可以写成集合的形式。有时候写成集合的形式可能会很困难。有时候也可以用文氏图来表示事件,这时可以用事件所代表图形的面积来按比例显示事件的概率。当样本空间有限,试验中每个基本事件发生的可能性相同的时候,称为古典概型。这时可以(也是一般用到的)取样本空间的所有的子集作为事件。然而,当样本空间不是有限的时候,特别是当样本空间是实数的时候,就不能取所有的子集作为事件了。其中的根本原因在于概率的定义。一般来说,当研究一个随机事件的时候,我们希望知道它发生的概率。事件发生的概率是一个介于0和1之间的数。当样本空间是不可数的时候,如果我们取样本空间所有的子集,那么概率论的公理系统会产生数学上的矛盾,也就是说,会有一些子集无法被定义概率。具体地说,概率论的公理系统是由三个部分 ( Σ , F , P ) {displaystyle (Sigma ,{mathcal {F}},mathbb {P} )} 组成的,又称为概率空间。这个空间包括:样本空间 Σ {displaystyle Sigma } 、事件集合 F {displaystyle {mathcal {F}}} (又称为事件体)以及定义在这上面的一个取概率的运算: P {displaystyle mathbb {P} } 。其中的事件集合 F {displaystyle {mathcal {F}}} 是一个σ-代数,而取概率的运算 P {displaystyle mathbb {P} } 需要满足概率的加法公理(σ-Additive):这个公理是符合一般人的直觉的:如果几件事情互相之间相互排斥,那么“它们几个中有一个发生”的概率应该等于其中每一个发生的概率的和。然而,对于不可数的样本空间,如果选全部的子集作为事件的话,会有一些子集,无论怎样为他们定义概率,都会违反加法公理。假设小明和小华玩一个游戏,让小华随意说一个0到1之间的实数。小明为了研究概率,选择了所有的子集作为概率集合。他将所有的0到1之间的有理数取出来。由于0到1之间的有理数是可数集合,所以可以做标号: q 1 , q 2 , ⋯ {displaystyle q_{1},q_{2},cdots } 。对于每一个0到1之间的实数 a {displaystyle a} ,小明将 a + q 1 , a + q 2 , ⋯ {displaystyle a+q_{1},a+q_{2},cdots } 作为一个集合,如果其中有大于1的,就减去1。这个集合是由可数个数构成的,小明把它记作 S a {displaystyle S_{a}} 。构造多个这样的集合 S a {displaystyle S_{a}} 满足其并集是区间,且它们之间两两不相交。然后将每个 S a {displaystyle S_{a}} 写成:再令:那么所得到的事件(也就是集合) T 1 , T 2 , ⋯ {displaystyle T_{1},T_{2},cdots } 的并集也是区间,而且它们之间两两不相交。由于这些事件之间地位相等,所以它们的概率 P ( T n ) {displaystyle mathbb {P} (T_{n})} 都是一样的。 如果 P ( T n ) > 0 {displaystyle mathbb {P} (T_{n})>0} ,那么根据加法原则,而如果 P ( T n ) = 0 {displaystyle mathbb {P} (T_{n})=0} ,那么根据加法原则,仍然有:因此无论如何,都会导致矛盾。也就是说小明无法为事件 T 1 {displaystyle T_{1}} 定出一个概率。在一般的测度理论中,这种集合称为(勒贝格)不可测集合。两个随机事件之间可以有各种各样的关系。如果两个事件同时发生的概率等于它们各自发生的概率的乘积,那么就称这两个事件是相互独立的。比如说,“抽到的牌是红桃”和“抽到的牌数字是4”就是相互独立的,因为两者同时发生——抽到的牌是红桃4——的概率是52分之1,而“抽到的牌是红桃”的概率是4分之1,“抽到的牌数字是4”的概率是13分之1,两者相乘便是52分之1。在概率运算时,还有:

相关

  • 胸膜腔胸膜腔(pleural cavity)为壁层胸膜和脏层胸膜之间反折包围的一对空腔,左右胸腔各有一个。脏层胸膜紧紧被覆于肺脏表面,而壁层胸膜则紧贴于胸壁(英语:thoracic wall)上。胸膜腔内含
  • 发热性癫痫热性痉挛(febrile convulsion),又称作又称作发烧性抽搐、热性抽搐、热性惊厥、热性全身痉挛,是一种癫痫性发作(英语:epileptic seizure),伴有体温升高的症状但是并无任何潜在的健康
  • 慢化剂中子减速剂(英语:Neutron moderator,又称中子慢化剂)在一般情况下,可裂变核发射出的中子的飞行速度比可被裂变核捕获的中子速度要快,因此为了产生链式反应,就必须要将中子的飞行速
  • 本都本都(希腊语:Πόντος),古代小亚细亚北部的一个地区,在黑海南岸。公元前302年,米特里达梯一世在亚历山大大帝死后的一片混乱中创建了本都王国。米特里达梯一世是安提柯一世的
  • 语言病理学言语病理学又称为言语治疗学,前者乃是本学科于美国及加拿大的名称而后者则是于英国的名称。言语病理学一般来说是一门康复医学,涉及范围广范,包括心理学、语言学、甚至生理学等
  • 鸭鸣报Maurice Maréchal Jeanne Maréchal Henri-Paul Deyvaux-GassierÉrik Emptaz Louis-Marie Horeau鸭鸣报(法语:Le Canard enchaîné)是法国一份以讽刺而闻名的周报,逢星期三
  • 秋千秋千 (闽南语、广东话称千秋)是靠一人或多人在游戏者的背后,推动游戏者,或自己利用绳索的前后摆荡,让游戏者的身体随秋千上下起落的一种游戏。通常两条绳索末端系一块木板、轮胎
  • 坦度螺酮坦度螺酮(英语:Tandospirone),是一款在中国与日本经常被用作为抗焦虑剂与抗抑郁药的药物。坦度螺酮为氮哌酮,哌嗪一员,化学结构上与丁螺环酮相似。
  • 山神山神,在一些人类的宗教信仰中,认为自然界充满神灵。当然山岳亦不例外,尤其崇山峻岭,更为人所崇拜。在春秋时代,孔子之母颜征在向尼山神祈祷,而生孔子。战国时代,楚国文豪屈原在《楚
  • 黏多糖糖胺聚糖(英语:Glycosaminoglycan,简称为GAGs,旧称为黏多糖(英语:mucopolysaccharides))是蛋白聚糖大分子中聚糖部分的总称。由糖胺的二糖重复单位组成,二糖单位中通常有一个是含氨