对立事件

✍ dations ◷ 2025-11-30 01:15:55 #对立事件
在概率论中,随机事件(或简称事件)指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是不可数之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。假设我们有一堆52张的扑克牌,并闭着眼睛在这堆牌中抽取一张牌,那么用概率论的术语来说,我们实际上是在做一个随机试验。这时,我们的样本空间是一个有着52个元素的集合,因为任意一张牌都是一个可能的结果。而一个随机事件,则是这个样本空间的任意一个子集(这个任意子集包括空集,一个元素的集合及多个元素的集合)。运用组合知识可以知道,随机事件一共有 2 52 {displaystyle 2^{52}} 种。当这个事件仅仅包括样本空间的一个元素(或者说它是一个单元素集合)的时候,称这个事件为一个基本事件。比如说事件“抽到的牌是黑桃7”。当事件是空集时,称这个事件为不可能事件。当事件是全集时,则称事件是必然事件。其它还有各种各样的事件,比如:由于事件是样本空间的子集,所以也可以写成集合的形式。有时候写成集合的形式可能会很困难。有时候也可以用文氏图来表示事件,这时可以用事件所代表图形的面积来按比例显示事件的概率。当样本空间有限,试验中每个基本事件发生的可能性相同的时候,称为古典概型。这时可以(也是一般用到的)取样本空间的所有的子集作为事件。然而,当样本空间不是有限的时候,特别是当样本空间是实数的时候,就不能取所有的子集作为事件了。其中的根本原因在于概率的定义。一般来说,当研究一个随机事件的时候,我们希望知道它发生的概率。事件发生的概率是一个介于0和1之间的数。当样本空间是不可数的时候,如果我们取样本空间所有的子集,那么概率论的公理系统会产生数学上的矛盾,也就是说,会有一些子集无法被定义概率。具体地说,概率论的公理系统是由三个部分 ( Σ , F , P ) {displaystyle (Sigma ,{mathcal {F}},mathbb {P} )} 组成的,又称为概率空间。这个空间包括:样本空间 Σ {displaystyle Sigma } 、事件集合 F {displaystyle {mathcal {F}}} (又称为事件体)以及定义在这上面的一个取概率的运算: P {displaystyle mathbb {P} } 。其中的事件集合 F {displaystyle {mathcal {F}}} 是一个σ-代数,而取概率的运算 P {displaystyle mathbb {P} } 需要满足概率的加法公理(σ-Additive):这个公理是符合一般人的直觉的:如果几件事情互相之间相互排斥,那么“它们几个中有一个发生”的概率应该等于其中每一个发生的概率的和。然而,对于不可数的样本空间,如果选全部的子集作为事件的话,会有一些子集,无论怎样为他们定义概率,都会违反加法公理。假设小明和小华玩一个游戏,让小华随意说一个0到1之间的实数。小明为了研究概率,选择了所有的子集作为概率集合。他将所有的0到1之间的有理数取出来。由于0到1之间的有理数是可数集合,所以可以做标号: q 1 , q 2 , ⋯ {displaystyle q_{1},q_{2},cdots } 。对于每一个0到1之间的实数 a {displaystyle a} ,小明将 a + q 1 , a + q 2 , ⋯ {displaystyle a+q_{1},a+q_{2},cdots } 作为一个集合,如果其中有大于1的,就减去1。这个集合是由可数个数构成的,小明把它记作 S a {displaystyle S_{a}} 。构造多个这样的集合 S a {displaystyle S_{a}} 满足其并集是区间,且它们之间两两不相交。然后将每个 S a {displaystyle S_{a}} 写成:再令:那么所得到的事件(也就是集合) T 1 , T 2 , ⋯ {displaystyle T_{1},T_{2},cdots } 的并集也是区间,而且它们之间两两不相交。由于这些事件之间地位相等,所以它们的概率 P ( T n ) {displaystyle mathbb {P} (T_{n})} 都是一样的。 如果 P ( T n ) > 0 {displaystyle mathbb {P} (T_{n})>0} ,那么根据加法原则,而如果 P ( T n ) = 0 {displaystyle mathbb {P} (T_{n})=0} ,那么根据加法原则,仍然有:因此无论如何,都会导致矛盾。也就是说小明无法为事件 T 1 {displaystyle T_{1}} 定出一个概率。在一般的测度理论中,这种集合称为(勒贝格)不可测集合。两个随机事件之间可以有各种各样的关系。如果两个事件同时发生的概率等于它们各自发生的概率的乘积,那么就称这两个事件是相互独立的。比如说,“抽到的牌是红桃”和“抽到的牌数字是4”就是相互独立的,因为两者同时发生——抽到的牌是红桃4——的概率是52分之1,而“抽到的牌是红桃”的概率是4分之1,“抽到的牌数字是4”的概率是13分之1,两者相乘便是52分之1。在概率运算时,还有:

相关

  • Nd4f4 6s22, 8, 18, 22, 8, 2蒸气压第一:533.1 kJ·mol−1 第二:1040 kJ·mol−1 第三:2130 kJ·mol主条目:钕的同位素钕(旧译作釢、鋖)是化学元素,化学符号是Nd,原子序数是60,属于
  • 吉尔伯特·赖尔吉尔伯特·赖尔(英语:Gilbert Ryle,1900年8月19日-1976年10月6日)是一名英国哲学家,是英国日常语言哲学中牛津学派的代表人物。他的著作《心的概念》被认为是日常语言学派的重要著
  • 薄伽丘乔万尼·薄伽丘(意大利语:Giovanni Boccaccio,1313年6月16日-1375年12月21日),文艺复兴时期的佛罗伦萨公国作家、诗人,以故事集《十日谈》留名后世。出生于佛罗伦斯附近(Certaldo),家
  • 说话说话是人类透过口语来沟通的方式,是建基于词法和名称的句法组合是造出极大量的词汇(多数超过一万组),人类所说话的每个词语都是拼音系统中由声母、韵母和声调产生而成,亦可以说是
  • 结肠结肠,中国古称回肠,是大多数脊椎动物消化系统的最后一部分,在将固体废物排出体外前吸收水和盐。结肠中未吸收的废物也在微生物(主要是细菌)的帮助下发酵。在食品和营养物质的吸收
  • 肥皂盒肥皂盒不使用洗手或其它清洁可罝放肥皂或洗衣皂,如浴缸或脸盆洗涤区附近。肥皂盒是由防水材料,如塑料,陶瓷和金属所组成。 肥皂盘,可安装在墙壁上。液体肥皂或肥皂泡沫,可用于给
  • Rush PoppersRush Poppers,又可简称芳香剂、Rush或Poppers,是各种亚硝酸酯——特别是异丙基亚硝酸盐(2-propyl nitrite)、异亚硝酸盐(2-methylpropyl nitrite)以及较为罕见的亚硝酸丁酯(isoamyl
  • 幻数幻数(英语:Magic Number),又称魔数,是指原子核中质子数和中子数的某个特定数值。当质子数或中子数为幻数,或者二者取值均为幻数时,原子核会显示出较高的稳定性。目前已经确认的幻数
  • PDF便携式文档格式(英语:Portable Document Format,缩写:PDF)是一种用独立于应用程序、硬件、操作系统的方式呈现文档的文件格式。每个PDF文件包含固定布局的平面文档的完整描述,包括
  • eIF5eIF5(eukaryotic initiation factor 5,真核起始因子5)是一种GTP酶激活蛋白,可以特异性激活eIF2的GTP酶活性,而其本身并不具有GTP酶的活性。在真核翻译起始过程中,当48S前起始复合