拜占庭将军问题

✍ dations ◷ 2025-04-26 21:37:15 #分布式计算,计算机科学,理论计算机科学,计算理论,容错

拜占庭将军问题(Byzantine Generals Problem),是由莱斯利·兰波特在其同名论文中提出的分布式对等网络通信容错问题。

在分布式计算中,不同的计算机通过通讯交换信息达成共识而按照同一套协作策略行动。但有时候,系统中的成员计算机可能出错而发送错误的信息,用于传递信息的通讯网络也可能导致信息损坏,使得网络中不同的成员关于全体协作的策略得出不同结论,从而破坏系统一致性。拜占庭将军问题被认为是容错性问题中最难的问题类型之一。

莱斯利·兰波特在其论文中描述了如下问题:

一组拜占庭将军分别各率领一支军队共同围困一座城市。为了简化问题,将各支军队的行动策略限定为进攻或撤离两种。因为部分军队进攻部分军队撤离可能会造成灾难性后果,因此各位将军必须通过投票来达成一致策略,即所有军队一起进攻或所有军队一起撤离。因为各位将军分处城市不同方向,他们只能通过信使互相联系。在投票过程中每位将军都将自己投票给进攻还是撤退的信息通过信使分别通知其他所有将军,这样一来每位将军根据自己的投票和其他所有将军送来的信息就可以知道共同的投票结果而决定行动策略。

系统的问题在于,将军中可能出现叛徒,他们不仅可能向较为糟糕的策略投票,还可能选择性地发送投票信息。假设有9位将军投票,其中1名叛徒。8名忠诚的将军中出现了4人投进攻,4人投撤离的情况。这时候叛徒可能故意给4名投进攻的将领送信表示投票进攻,而给4名投撤离的将领送信表示投撤离。这样一来在4名投进攻的将领看来,投票结果是5人投进攻,从而发起进攻;而在4名投撤离的将军看来则是5人投撤离。这样各支军队的一致协同就遭到了破坏。

由于将军之间需要通过信使通讯,叛变将军可能通过伪造信件来以其他将军的身份发送假投票。而即使在保证所有将军忠诚的情况下,也不能排除信使被敌人截杀,甚至被敌人间谍替换等情况。因此很难通过保证人员可靠性及通讯可靠性来解决问题。

假使那些忠诚(或是没有出错)的将军仍然能通过多数决定来决定他们的战略,便称达到了拜占庭容错。在此,票都会有一个默认值,若消息(票)没有被收到,则使用此默认值来投票。

上述的故事映射到计算机系统里,将军便成了计算机,而信差就是通信系统。虽然上述的问题涉及了电子化的决策支持与信息安全,却没办法单纯的用密码学与数字签名来解决。因为电路错误仍可能影响整个加密过程,这不是密码学与数字签名算法在解决的问题。因此计算机就有可能将错误的结果提交去,亦可能导致错误的决策。

在1982年的论文中提过几个解决方案。方案中把问题往下拆解,认为在“拜占庭将军”的问题可以在“军官与士官的问题”里解决,以降低将军问题的发生。而所谓的“军官与士官的问题”,就是探讨军官与他的士官是否能忠实实行命令。

此外,1980年代还有其他用来达到拜占庭容错的架构被提出,如:FTMP、MMFCS与 SIFT。

1999年,卡斯托(Miguel Castro)与李斯克夫(Barbara Liskov)提出了实用拜占庭容错(PBFT)算法。该算法能提供高性能的运算,使得系统可以每秒处理成千的请求,比起旧式系统快了一些。

而在PBFT之后,许多用于拜占庭容错(BFT)的通信协议也被提出来改善其通信的强健性与效率。比如Q/U、HQ、Zyzzyva与ABsTRACTs...,用来提升效率。而Aardvark与RBFT是用来加强强健性。另外,Adapt则使用原有的BFT协议做调适,以强化其效率与强健性。BFT协议更可以借由加入可任务的单元,以减少发出副本的次数。比如:A2M-PBFT-EA与MinBFT。

在分布式对等网络中需要按照共同一致策略协作的成员计算机即为问题中的将军,而各成员计算机赖以进行通讯的网络链路即为信使。拜占庭将军问题描述的就是某些成员计算机或网络链路出现错误、甚至被蓄意破坏者控制的情况。

在点对点式数字货币系统比特币里,比特币网络的运作是平行的(parallel)。各节点与终端都运算著区块链来达成工作量证明(PoW)。工作量证明的链接是解决比特币系统中拜占庭问题的关键,避免有问题的节点(即前文提到的“反叛的将军”)破坏数字货币系统里交易帐的正确性,是对整个系统的运行状态有着重要的意义。

在一些飞行器(如波音777)的系统中也有使用拜占庭容错。而且由于是即时系统,容错的功能也要能尽快回复,比如即使系统中有错误发生,容错系统也只能做出一微秒以内的延迟。

一些航天飞机的飞行系统甚至将容错功能放到整个系统的设计之中。

拜占庭容错机制是将收到的消息(或是收到的消息的签名)转交到其他的接收者。这类机制都假设它们转交的消息都可能念有拜占庭问题。在高度安全要求的系统中,这些假设甚至要求证明错误能在一个合理的等级下被排除。当然,要证明这点,首先遇到的问题就是如何有效的找出所有可能的、应能被容错的错误。这时候会试着在系统中加入错误插入器。

相关

  • 动物界è§å†…文动物是多细èƒçœŸæ ¸ç”Ÿå‘½ä½“中的一大类群,统称为动物界ã
  • 69式69式,是对一组性交体位的统称,指两人调整姿势,使各自的口部都靠近对方的生殖器,从而互相口交。“相互同时口交通常在英语中以委婉的法语数字形式“soixante-neuf””表示,古代中
  • 绿绿色是大自然界中常见的颜色。植物的绿色来自于叶绿素。绿色的光波长约550纳米,光的三原色之一。可经由蓝色和黄色混和而成的颜色。和绿色相对的颜色是Magenta(品红色),而不是传
  • 巨型短面袋鼠巨型短面袋鼠(Procoptodon)是一属生活在更新世澳洲的袋鼠。P. goliah是体型最大的袋鼠,站立时约有3米高,重232公斤。巨型短面袋鼠的面扁平,眼睛向前。每一只脚上只有一只脚趾,就像
  • G蛋白耦联受体结构 / ECODG蛋白偶联受体(G Protein-Coupled Receptors,GPCRs),是一大类膜蛋白受体的统称。这类受体的共同点是其立体结构中都有七个跨膜α螺旋,且其肽链的C端和连接第5和第6个
  • span class=nowrapNbO(NOsub3/sub)sub3/sub/spa硝酸铌酰是一种无机化合物,化学式为NbO(NO3)3。硝酸铌酰由五氯化铌和五氧化二氮反应得到:硝酸铌酰是一种白色结晶粉末,在空气中发烟。遇水分解,产生硝酸和水合氧化铌(V)。
  • 不净动物本条目是在伊斯兰教、犹太教和基督教里被定义为不净动物的清单。其他东方的宗教,如佛教、道教、儒教等,则没有不净动物的概念。这些动物包括以下种类:以下列出的动物没有在圣经
  • 古巴教育古巴教育维持在高水平质素,该国设有多间历史悠久的高等学府和大学,包括于1727年成立的哈瓦那大学。卡斯特罗政府在1959年古巴革命后,将所有教育机构移交国家营运,教育系统完全由
  • 米勒夫·阿杜勒哈尤格鲁米勒夫·阿杜勒哈尤格鲁(土耳其语:Melih Abdulhayoğlu,1968年3月10日-),是一名出色的互联网安全专家,也是一位优秀的企业家。作为创新者,他拥有数十项专利,并发表过许多互联网安全领
  • 坪内车辆基地坪内车辆基地(朝鲜语:평내차량사업소/坪內車輛事業所  */?)是韩国铁道公社位于京畿道南杨州市的一个车辆段,在京春线附近,连接坪内好坪站。这个车辆段主要用于京春线的361000系