测量精度

✍ dations ◷ 2025-11-09 17:13:26 #统计学,精准,误差理论

在测量学中,测量精度是衡量测量结果的真实性与可靠性的指标,通常包含精确度、精密度、准确度及正确度等含义。其中,准确度被认为是由正确度和精密度组合而成,用于衡量观测结果与其真值之间的接近程度;正确度指测量值的数学期望与真实值之间的接近程度,反映了测量过程中系统误差的大小;精确度指测量值与其数学期望之间的离散程度,反映了测量过程中偶然误差的大小。因此,精确度反映了偶然误差和系统误差的联合影响。在中文语境下,精度常被用于指精确度或是精密度,准度则通常指准确度或是正确度的简称。精度和准度的具体含意应根据语境进行判别,规范性文件则通常会回避对“精度”的使用以免造成歧义。

在1994年国际标准化组织发布的关于测量精度概念的规范文件ISO 5725及其所对应的中华人民共和国国家标准GB/T 6379-2004 《测量方法与结果的准确度(正确度与精密度)》中,对测量精度的描述被分为准确度、正确度和精密度三个概念。该规范性文件的第一部分给出了对这三个概念的定义:

与之相关的还有偏倚、重复性、再现性的概念:

另外,对于准确度,ISO 5725注明”当用于一组测试结果时,由随机误差分量和系统误差即偏倚分量组成“;对于重复性的注明是“正确度的度量通常用术语偏倚表示”以及“准确度曾被称为‘平均数的准确度’,这种用法不被推荐”;对于精密度的注明则是“精密度仅仅依赖于随机误差的分布而与真值或规定值无关”“ 精密度的度量通常以不精密度表达,其量值用测试结果的标准差来表示,精密度越低,标准差越大”。

除GB/T 6379-2004以外,中华人民共和国国家计量技术规范JJF 1001-2001 《通用计量术语及定义》中亦以相近的描述对准确度、正确度和精密度作出了定义。

中国大陆使用的测绘学领域规范性文件GB/T 14911-2008 《测绘基本术语》中仅对“准确度”与“精密度”作出了定义:

可见,测绘学中的“精密度”与ISO 5725及GB/T 6379-2004的概念相近,但前者的“准确度”则更接近于后者“正确度”的概念。而对于后者的“准确度”,测绘学有使用“精确度”一词来代称的情况。另外,测绘学中的“精度指标”通常是指平均误差、中误差、极限误差与相对误差等衡量精密度的指标。在不存在系统误差时,测绘学中的“精确度”即可由“精度(精密度)”代称;而存在系统误差时,测绘学中的“精确度”则应由“精度(精密度)”和“准确度(正确度)”共同衡量。

假设某一观测量的真实值为 X ~ {\displaystyle {\tilde {X}}} ,对其进行 n {\displaystyle n} 次观测,可以得到由 n {\displaystyle n} 个观测值组成的观测向量

这些观测量的测量误差 Δ {\displaystyle \Delta } 是其真实值与观测值之差:

以概率论中的中心极限定理为依据,测量误差通常被视作是数学期望为 E {\displaystyle \operatorname {E} } ,标准差为 σ {\displaystyle \sigma } 的随机变量,并且服从于相应的正态分布:

基于这一假设,可以采用统计学的方法构造各类指标对测量误差的分布情况进行分析,以评价测量结果的准确度、精密度和正确度。又由于偶然误差和系统误差具有不同的统计特性,即偶然误差的数学期望为零,但系统误差不然。因此在进行测量结果的分析时,也常会将偶然误差与系统误差分别分析,即选用不同的精度指标来评价精密度和正确度。

偶然误差是指在大小和符号上表现出偶然性,但总体上符合一定统计规律的误差,其数学期望为零。精密度即是对偶然误差统计的描述。

根据 E = 0 {\displaystyle \operatorname {E} =0} 的特性,可以得出偶然误差的中误差为:

其估计值由下列公式计算

通过方差是中误差的平方的关系,亦可得到偶然误差的方差及其估计值。

对于正态分布,误差分布于与平均值距离一倍及二倍、三倍中误差之间的概率分别为

在远离平均值时,误差出现的概率相当接近于零,可以在假设检验中将其排除,而选定的排除“该误差是偶然误差”这一假设的极限值即为极限误差。在测量学中,常以二倍或三倍中误差作为极限误差。

平均误差即平均绝对误差(英语:Mean absolute error),对于一定观测条件下的某组独立的偶然误差来说,是其绝对值的数学期望:

相应的估计值为

根据正态分布的概率分布函数,可以得出平均误差 θ {\displaystyle \theta } 与中误差 σ {\displaystyle \sigma } 之间的数学关系:

即有

或然误差(英语:Probable error) ρ {\displaystyle \rho } 是使区间 ( ρ , + ρ ) {\displaystyle (-\rho ,+\rho )} 内的累积概率分布为 1 / 2 {\displaystyle 1/2} 的值,即:

且可解得

观测量 X {\displaystyle X} 中存在的系统误差是指观测量的真实值 X ~ {\displaystyle {\tilde {X}}} 与其数学期望 E {\displaystyle \operatorname {E} } 之间的差值:

观测量 X {\displaystyle X} 的均方误差 MSE {\displaystyle \operatorname {MSE} } 通过下列公式计算:

将其进行分解,可以得出以方差和系统误差的平方和表示的均方误差:

因此,均方误差被认为同时包含了对偶然误差和系统误差的定量描述,可以衡量测量学中的“精确度”。

相关

  • 电解电解是指将电流通过电解质溶液或熔融态物质,而在阴极和阳极上引起氧化还原反应的过程。电化学电池在接受外加电压(即充电过程)时,会发生电解过程。以下为在酸性水溶液中电解水的
  • 河静省河静省(越南语:Tỉnh Hà Tĩnh/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","M
  • 2006年联合国秘书长选举科菲·安南潘基文2006年联合国秘书长选举旨在选出一名新任联合国秘书长,以接替任期将于2006年12月31日结束第二届任期的时任秘书长科菲·安南。此次选举共有七名候选人,来自韩
  • 创始人创业(英语:entrepreneurship)指开创新事业。近几年最常见形式是开创新商业(俗称创业公司)。尽管如此,这术语已被扩展到在社会和政治上的企业家活动。当企业家精神用来描述在公司或
  • DIN德国标准化学会(德语:Deutsches Institut für Normung e.V.,缩写:DIN)是德国的国家级标准化组织,也是ISO中代表德国会籍的会员机构,总部位于柏林。德国标准化学会的前身是1917年成
  • 乔华盛顿乔治·华盛顿(英语:George Washington,1732年2月22日-1799年12月14日),美国国父,1775年至1783年美国独立战争时的殖民地军总司令,1789年成为美国第一任总统(其同时也成为全世界第一位
  • 渡轮渡轮,亦称为摆渡船、交通船,在固定航线上用来运输乘客的商船(英语:Merchant vessel),一般提供双向运送服务。渡轮有时也运送载具与货物,有时因其功能不同而被称作“水上巴士”或“
  • 受(梵语、巴利语:Vedanā),佛教术语,意指感受、感觉或知觉。当感官,外境,以及意识三者聚合(触)时,所升起的内心感觉,即是受。通常可以概分为痛苦(苦受)、快乐(乐受)以及没有特殊感受(不苦不
  • 权相佑儿子 权禄熙: (2009-02-06) 2009年2月6日(11岁) 女儿 权利浩:权相佑(韩语:권상우,1976年8月5日-),韩国男演员。华语圈曾一度将他的汉字姓名误写成权相宇,但权相佑才是他正确的汉字名,成
  • 亚眠《亚眠和约》(法语:Paix d'Amiens,英语:Treaty of Amiens),于拿破仑战争发生期间的1802年3月,由当时法兰西第一共和国第一执政拿破仑·波拿巴的兄长约瑟夫·波拿巴及英国的康沃利斯