联合谱半径

✍ dations ◷ 2025-11-09 19:24:59 #控制理论,线性代数

联合谱半径(joint spectral radius)为一数学名词,是将传统上针对矩阵的谱半径表示法,扩展到矩阵集合的表示法。近年来此表示法已应用在许多工程领域中,也是目前研究的热门主题。

矩阵集合的联合谱半径是在集合中矩阵乘积的最大渐近成长率。针对有限集合(或是更广义的紧凑集合) M = { A 1 , , A m } R n × n , {\displaystyle {\mathcal {M}}=\{A_{1},\dots ,A_{m}\}\subset \mathbb {R} ^{n\times n},} ,其联合谱半径定义如下:

可以证明其极限存在,而且其数值不会随所选择的矩阵范数种类而改变(这对任何矩阵范数都成立,不过若矩阵范数有次可乘性sub-multiplicative,更容易证明)。联合谱半径的概念是在1960年由麻省理工学院的两位数学家吉安-卡洛·罗塔及威廉·吉尔伯特·斯特朗发明,不过在英格丽·多贝西及杰佛瑞·拉加里亚斯(英语:Jeffrey Lagarias)的研究后,才开始受到注意,他们证明了联合谱半径可以用来描述特定小波函数的光滑性。之后就提出了许多相关的应用。目前已知联合谱半径的量值求值,不论是要计算或只是近似,在运算复杂度上都是NP困难,就算集合 M {\displaystyle {\mathcal {M}}} 中只有二个矩阵,其中所有非零元素都相同也是一样。而且, ρ 1 ? {\displaystyle \rho \leq 1?} 这个问题是不可判定问题。不过,近年来已对此问题有多一些的了解,似乎在实务上,可以计算联合谱半径到令人满意的精度,而且对于一些工程及数学问题,可以有一些有趣的洞察。

虽然在联合谱半径的可计算性理论上有一些负面的结果,不过已有提出一些在实务上可以良好运作的方法。目前已找到算法,可以达到任意的精度,所需要的时间也是事先可以计算得知。这类的算法可以视为是近似向量范数(称为极值范数extremal norm)中的单位球。一般会将算法分为两类:第一类是多义范数法(polytope norm method),透过计算点的长轨迹来建构极值范数,此方法的好处是在最理想的情形下,此方法可以找到联合谱半径的精确值,而且可以证明这个值就是正确值。

第二种方式是用“近代最佳化技巧”(modern optimization techniques)来近似极值范数,例如椭圆范数近似(ellipsoid norm approximation)、半正定规划、多项式平方和(英语:Polynomial SOS)、圆锥规划(英语:Conic optimization)。这些方法的好处是容易实现,而且实务上此方式所产生的联合谱半径,一般来说是在最理想的范围内。

有关联合谱半径的可计算性,存在以下的猜想:

“针对任何有限个的矩阵集合 M R n × n , {\displaystyle {\mathcal {M}}\subset \mathbb {R} ^{n\times n},} ,存在一个矩阵乘积 A 1 A t {\displaystyle A_{1}\dots A_{t}} 使得

上式中的“ ρ ( A 1 A t ) {\displaystyle \rho (A_{1}\dots A_{t})} ”是指矩阵 A 1 A t {\displaystyle A_{1}\dots A_{t}} 在传统意义下的谱半径。

此猜想在1995年提出,在2003年证否。在参考资料中的反例用到了进阶的量度理论(measure-theoretical)概念。之后,也找到了许多的反例,包括只用到简单组合数学性质的矩阵以及另一个用到动态系统概念的反例。近来也提出了一显式的反例。许多相关的问题还没有证明,例如对于成对的逻辑矩阵,此猜想是否成立。

联合谱半径的出现,是为了作为离散时间切换动力系统的稳定性条件。而以下方程定义的系统

为李雅普诺夫稳定性若而唯若 ρ ( M ) < 1. {\displaystyle \rho ({\mathcal {M}})<1.}

因为英格丽·多贝西及杰佛瑞·拉加里亚斯将联合谱半径应用在小波函数的连续性上,因此联合谱半径受到许多人的注意。之后的应用包括有数论、信息理论、自治代理(英语:autonomous agent)共识、字的组合数学(英语:combinatorics on words)等。

联合谱半径是将一个矩阵的谱半径扩展到矩阵集合。不过也有其他可以适用于多个矩阵的量化表示法:

相关

  • EntrezEntrez全局查询跨数据库搜索系统是一个联合搜寻(英语:Federated search)引擎。它能让使用者能一次搜寻NCBI网站上的许多不同的健康科学数据库。该数据库能快速搜寻蛋白质的一级
  • 雌三醇雌三醇(Estriol , oestriol, E3)是人类三种主要的雌激素之一。雌二醇和雌酮的代谢产物。在雌酮、雌二醇、雌三醇中,以雌三醇的活性最弱。存在于尿中,在怀孕期尿中含量更高。未怀孕
  • 石灰岩石灰岩(灰石)(CaCO3)简称灰岩,又叫石灰石,是以方解石(矿物)为主要成分的碳酸钙岩。石灰岩主要是在浅海的环境下形成的。石灰岩按成因可划分为粒屑石灰岩(流水搬运、堆积形成);生物骨
  • dATP去氧腺苷三磷酸(Deoxyadenosine triphosphate,dATP)是一种去氧核苷酸三磷酸(dNTP),结构与腺苷三磷酸(ATP)相似,但少了一个位于五碳糖2号碳上的-OH基,取而代之的是单独的氢原子。若移去
  • 建筑学院约翰·H·丹尼尔建筑、地形与设计学院(英语:John H. Daniels Faculty of Architecture, Landscape, and Design)是加拿大多伦多大学的一个学术学院,它提供在建筑、景观设计、城
  • 偏苯三甲酸偏苯三甲酸是一种有机化合物,为苯三甲酸的三种同分异构体之一。偏苯三甲酸加热脱水可以制得偏苯三甲酸酐。和金属盐在一定pH下反应生成盐或配合物。
  • 劲爆Bom Bom弹珠人《炸弹人 弹珠人爆外传》 (日语:Bビーダマン爆外伝,港译:BOMBOM弹珠人,中国大陆译:弹珠警察,台湾译炸弹超人)是1998年2月7日到1999年1月31日期间,在日本名古屋电视台与朝日电视系播放
  • 2019冠状病毒病日本国内病例 (2020年3月上旬) 除特别注明外,本文所有时间均以东九区时间(UTC+9)为准。3月1日,公布再多1宗死亡个案,死亡个案增至6宗。死者(#153)是北海道钏路地方70余岁男性,自身有吸入性肺炎,29日晚间7时左右不
  • 氯丙醇氯丙醇(Chloropropanols)是一类在化学制作豉油的过程中所产生的致癌物质。日常比较常见的氯丙醇包括以下三种:传统豉油酿造法是以微生物来分解黄豆蛋白,酿造过程约需半年。(参看
  • 费奥多·欧克洛普科夫费奥多尔·马特维耶维奇·奥赫洛普科夫(俄语:Фёдор Матвеевич Охлопков,转写:Fyodor Matveyevich Okhlopkov,1908年3月2日-1968年5月28日),雅库特人,二战时期