联合谱半径

✍ dations ◷ 2025-04-04 05:20:13 #控制理论,线性代数

联合谱半径(joint spectral radius)为一数学名词,是将传统上针对矩阵的谱半径表示法,扩展到矩阵集合的表示法。近年来此表示法已应用在许多工程领域中,也是目前研究的热门主题。

矩阵集合的联合谱半径是在集合中矩阵乘积的最大渐近成长率。针对有限集合(或是更广义的紧凑集合) M = { A 1 , , A m } R n × n , {\displaystyle {\mathcal {M}}=\{A_{1},\dots ,A_{m}\}\subset \mathbb {R} ^{n\times n},} ,其联合谱半径定义如下:

可以证明其极限存在,而且其数值不会随所选择的矩阵范数种类而改变(这对任何矩阵范数都成立,不过若矩阵范数有次可乘性sub-multiplicative,更容易证明)。联合谱半径的概念是在1960年由麻省理工学院的两位数学家吉安-卡洛·罗塔及威廉·吉尔伯特·斯特朗发明,不过在英格丽·多贝西及杰佛瑞·拉加里亚斯(英语:Jeffrey Lagarias)的研究后,才开始受到注意,他们证明了联合谱半径可以用来描述特定小波函数的光滑性。之后就提出了许多相关的应用。目前已知联合谱半径的量值求值,不论是要计算或只是近似,在运算复杂度上都是NP困难,就算集合 M {\displaystyle {\mathcal {M}}} 中只有二个矩阵,其中所有非零元素都相同也是一样。而且, ρ 1 ? {\displaystyle \rho \leq 1?} 这个问题是不可判定问题。不过,近年来已对此问题有多一些的了解,似乎在实务上,可以计算联合谱半径到令人满意的精度,而且对于一些工程及数学问题,可以有一些有趣的洞察。

虽然在联合谱半径的可计算性理论上有一些负面的结果,不过已有提出一些在实务上可以良好运作的方法。目前已找到算法,可以达到任意的精度,所需要的时间也是事先可以计算得知。这类的算法可以视为是近似向量范数(称为极值范数extremal norm)中的单位球。一般会将算法分为两类:第一类是多义范数法(polytope norm method),透过计算点的长轨迹来建构极值范数,此方法的好处是在最理想的情形下,此方法可以找到联合谱半径的精确值,而且可以证明这个值就是正确值。

第二种方式是用“近代最佳化技巧”(modern optimization techniques)来近似极值范数,例如椭圆范数近似(ellipsoid norm approximation)、半正定规划、多项式平方和(英语:Polynomial SOS)、圆锥规划(英语:Conic optimization)。这些方法的好处是容易实现,而且实务上此方式所产生的联合谱半径,一般来说是在最理想的范围内。

有关联合谱半径的可计算性,存在以下的猜想:

“针对任何有限个的矩阵集合 M R n × n , {\displaystyle {\mathcal {M}}\subset \mathbb {R} ^{n\times n},} ,存在一个矩阵乘积 A 1 A t {\displaystyle A_{1}\dots A_{t}} 使得

上式中的“ ρ ( A 1 A t ) {\displaystyle \rho (A_{1}\dots A_{t})} ”是指矩阵 A 1 A t {\displaystyle A_{1}\dots A_{t}} 在传统意义下的谱半径。

此猜想在1995年提出,在2003年证否。在参考资料中的反例用到了进阶的量度理论(measure-theoretical)概念。之后,也找到了许多的反例,包括只用到简单组合数学性质的矩阵以及另一个用到动态系统概念的反例。近来也提出了一显式的反例。许多相关的问题还没有证明,例如对于成对的逻辑矩阵,此猜想是否成立。

联合谱半径的出现,是为了作为离散时间切换动力系统的稳定性条件。而以下方程定义的系统

为李雅普诺夫稳定性若而唯若 ρ ( M ) < 1. {\displaystyle \rho ({\mathcal {M}})<1.}

因为英格丽·多贝西及杰佛瑞·拉加里亚斯将联合谱半径应用在小波函数的连续性上,因此联合谱半径受到许多人的注意。之后的应用包括有数论、信息理论、自治代理(英语:autonomous agent)共识、字的组合数学(英语:combinatorics on words)等。

联合谱半径是将一个矩阵的谱半径扩展到矩阵集合。不过也有其他可以适用于多个矩阵的量化表示法:

相关

  • 休宁县休宁县是中国安徽省黄山市下辖的一个县,位于安徽、江西、浙江三省交界处。休宁县是古徽州府一府六县之一,被誉为“中国第一状元县”。东汉建安十三年(208年)建休阳县,距今已有180
  • 基础教育基础教育(Basic education),指人们在现代社会需要接收的基本教育。通常包括正规的小学和中学阶段的教育。接受基础教育是一个人获得具备现代公民素质的基本必要方式。
  • 丁 林丁林(1965年7月-),生于安徽萧县,中国科学院青藏高原研究所研究员,中国科学院院士。主要从事青藏高原地质学研究。1988年,毕业于北京大学地质学系,获构造与地质力学专业学士学位。199
  • 硫酸锌硫酸锌(化学式:ZnSO4)是最重要的锌盐之一,为无色斜方晶体或白色粉末,其七水合物(ZnSO4·7H2O)俗称皓矾,是一种天然矿物。硫酸锌是无色或白色斜方晶体或粉末,易溶于水,水溶液呈酸性,溶于
  • 爆炸品爆裂物分为军用、商用、急造及自然四种,军用爆裂物的威力比较大,爆炸性化学品制作的军用及商用爆裂物属于管制物品。急造则以身边所有的可用物品,以一定比例混合而成。需要具有
  • 血红素尿症血红素尿症(Hemoglobinuria)是在尿液中发现血红蛋白(血红素)浓度过高的疾病。此疾病多半和溶血性贫血(英语:hemolytic anemia)有关,是原发性的血管内溶血,破坏红血球,因此血红素释放到
  • 性爱娃娃性爱娃娃(英语:sex doll或love doll,日语:ダッチワイフ、和制外来语:dutch wife),是一种真人大小、人体形状的性玩具,可让使用者进行自行性刺激,在行为中获得快感。过去的性爱娃娃多
  • 张承业 (朝鲜)张承业(1843年-1897年),字景犹,号吾园,本贯太原。朝鲜王朝末期著名画家,官至司宪府监察。吾园先生曾遍览历代字画真迹,于花鸟、山水、人物均有建树。落笔有神,意趣顿生。其为人也豪放
  • Ia Ora 'O Tahiti Nui《Ia Ora 'O Tahiti Nui》是法属波利尼西亚的一首地区颂歌,于1993年被采纳,在国际足球赛前奏唱。法属波利尼西亚地区代表队塔希提于2012年获得了大洋洲杯冠军,得以参加2013年联
  • 伊万·雷根伊万·雷根 (斯洛文尼亚语:Ivan (Janez) Regen,亦作Johann Regen,1868年12月9日-1947年7月27日),斯洛文尼亚生物学家, 以其对生物声学领域的研究而知名.雷根生于Lajše的一个村庄