圆形

✍ dations ◷ 2025-06-07 18:11:55 #圆形
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用 O {displaystyle O} 表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2, A {displaystyle A} 、 B {displaystyle B} 分别为圆上任意两点,那么 A B ¯ {displaystyle {overline {AB}}} 就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号 ⌢ {displaystyle frown } 表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线 Q P ¯ {displaystyle {overline {QP}}} 与圆只有一个交点 P {displaystyle P} ,那么 Q P ¯ {displaystyle {overline {QP}}} 就是圆的切线。 过圆上一点的切线:设该点为 P ( x o , y o ) {displaystyle P(x_{o},y_{o})} ,圆的方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} ,则圆在该点的切线方程为: ( x o − a ) ( x − a ) + ( y o − b ) ( y − b ) = r 2 {displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线 Q O ¯ {displaystyle {overline {QO}}} 与圆有两个公共点,那么直线 Q O ¯ {displaystyle {overline {QO}}} 就是圆的割线。圆的一周的长度称为圆的周长(记作 C {displaystyle C} )。圆的周长与半径的关系是:其中 π {displaystyle pi } 是圆周率。圆的面积与半径的关系是: A = π r 2 {displaystyle A=pi r^{2}} 。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心 O {displaystyle O} 的任意直线,圆的对称中心为圆心 O {displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 如上图, M {displaystyle M} 为圆心, A , B , C {displaystyle A,B,C} 分别为圆周上的点,那么: ∠ A M B = 2 ∠ A C B {displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径 B E ¯ ⊥ {displaystyle {overline {BE}}perp } 弦 A C ¯ {displaystyle {overline {AC}}} ,那么 B E ¯ {displaystyle {overline {BE}}} 平分 A C ¯ {displaystyle {overline {AC}}} 且平分 A C ⌢ {displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为 r {displaystyle r} 及 R {displaystyle R} ,圆心距为 d {displaystyle d} ,其中 r < R {displaystyle r<R} )之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。 在方程 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} 中,若圆心 ( a , b ) {displaystyle (a,b)} 为定点, r {displaystyle r} 为参变数,则它表示同心圆的圆系方程.若 r {displaystyle r} 是常量, a {displaystyle a} (或 b {displaystyle b} )为参变数,则它表示半径相同,圆心在同一直线上(平行于 x {displaystyle x} 轴或 y {displaystyle y} 轴)的圆系方程.截面为圆的三维形状有:

相关

  • 大中东地区大中东地区(英语:The Greater Middle East)是美国乔治·W·布什政府于21世纪的前10年创建来描述穆斯林世界附近的国家,尤其是伊朗、土耳其、阿富汗和巴基斯坦的政治地理学名词。
  • 变旋现象变旋(英语:Mutarotation)是环状单糖或糖苷的比旋光度由于其α-和β-端基差向异构体达到平衡而发生变化,最终达到一个稳定的平衡值的现象。变旋现象往往能被某些酸或碱催化。例如
  • 唯我论唯我论(英语:Solipsism)是一个提出唯某者自己的心灵是确认之存在的哲学理论。唯我论是由拉丁语:solus,意为唯独、唯一,以及拉丁语:ipse,意为自我,所组成。字面意思为我。唯我论的历史
  • 行星行星(英语:planet;拉丁语:planeta),通常指自身不发光,环绕着恒星的天体。其公转方向常与所绕恒星的自转方向相同(由西向东)。一般来说行星需具有一定质量,行星的质量要足够的大(相对于
  • C波段1 2 3 4 5 6 7 8 9 10 11ELF SLF ULF VLF LF MF HF VHF UHF SHF EHFA B C D E F G H I J K L MHF VHF UHF L S C X Ku K Ka Q V W根据IEEE 521-2002标准,C波段是指频率在4-8
  • 核孔蛋白结构 / ECOD核孔蛋白(英语:nucleoporins)是一类蛋白质家族,作为构成核孔复合物的砖块。核孔复合物是长度纵穿整个核被膜的巨大结构物,形成了细胞核与细胞质之间调控高分子流动的
  • FtsZFtsZ是一种由细菌ftsZ基因编码的蛋白质,组装在接下来会发生细胞分裂,形成隔板的Z-环上,同时该蛋白也是真核生物微管蛋白在原核生物中的同源物。FtsZ以“长丝的温度敏感突变体Z
  • 池塘池塘又称池溏,也有地方方言称为地塘、埤塘、陂塘。池塘是指比湖泊小的水体。界定池塘和湖泊的方法颇有争议性。一般而言,池塘是小得不需使用船只而多采竹筏渡过的。另一个定义
  • 巴斯德氏菌属P. aerogenes P. anatis P. avium P. bettyae P. caballi P. canis P. dagmatis P. gallicida P. gallinarum P. granulomatis P. langaaensis P. lymphangitidis P. mairii
  • 香精油精油(essential oil)是一种芳香物质,一般是从植物中萃取出来的芳香分子,为香水、调味料、化妆品等工业的重要产品,以及芳香疗法(aromatherapy)的主要原料。精油通常使用水蒸气蒸馏