圆形

✍ dations ◷ 2025-04-02 20:43:44 #圆形
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用 O {displaystyle O} 表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2, A {displaystyle A} 、 B {displaystyle B} 分别为圆上任意两点,那么 A B ¯ {displaystyle {overline {AB}}} 就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号 ⌢ {displaystyle frown } 表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线 Q P ¯ {displaystyle {overline {QP}}} 与圆只有一个交点 P {displaystyle P} ,那么 Q P ¯ {displaystyle {overline {QP}}} 就是圆的切线。 过圆上一点的切线:设该点为 P ( x o , y o ) {displaystyle P(x_{o},y_{o})} ,圆的方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} ,则圆在该点的切线方程为: ( x o − a ) ( x − a ) + ( y o − b ) ( y − b ) = r 2 {displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线 Q O ¯ {displaystyle {overline {QO}}} 与圆有两个公共点,那么直线 Q O ¯ {displaystyle {overline {QO}}} 就是圆的割线。圆的一周的长度称为圆的周长(记作 C {displaystyle C} )。圆的周长与半径的关系是:其中 π {displaystyle pi } 是圆周率。圆的面积与半径的关系是: A = π r 2 {displaystyle A=pi r^{2}} 。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心 O {displaystyle O} 的任意直线,圆的对称中心为圆心 O {displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 如上图, M {displaystyle M} 为圆心, A , B , C {displaystyle A,B,C} 分别为圆周上的点,那么: ∠ A M B = 2 ∠ A C B {displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径 B E ¯ ⊥ {displaystyle {overline {BE}}perp } 弦 A C ¯ {displaystyle {overline {AC}}} ,那么 B E ¯ {displaystyle {overline {BE}}} 平分 A C ¯ {displaystyle {overline {AC}}} 且平分 A C ⌢ {displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为 r {displaystyle r} 及 R {displaystyle R} ,圆心距为 d {displaystyle d} ,其中 r < R {displaystyle r<R} )之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。 在方程 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} 中,若圆心 ( a , b ) {displaystyle (a,b)} 为定点, r {displaystyle r} 为参变数,则它表示同心圆的圆系方程.若 r {displaystyle r} 是常量, a {displaystyle a} (或 b {displaystyle b} )为参变数,则它表示半径相同,圆心在同一直线上(平行于 x {displaystyle x} 轴或 y {displaystyle y} 轴)的圆系方程.截面为圆的三维形状有:

相关

  • 呼吸呼吸(英语:breathing),生物的一种生理现象,为一种生物细胞的生化作用(称作“呼吸作用”)所呈现出来的外在生理现象,动物及植物皆有。一般人的认知,则是指高等生物,尤其是人类利用肺部
  • 乳房切除术在医学中,乳房切除术(英语:Mastectomy)是指手术去除部分或全部,一个或两个乳房的医用术语。做乳房切除术是为了治疗乳癌;在一些情况,被认为是乳腺癌的高危人群的妇女和一些男性,需要
  • 肌肉运动知觉本体感觉,又称肌肉运动知觉,是一种对肌肉各个部分的动作或者一连串动作所产生的感觉,称呼为“自我知觉”。可是对某些人来说肌肉运动知觉跟自我知觉不同在于保持平衡的触觉。例
  • 语源学语源学(英语:Etymology,希腊语:ετυμολογία),是一门研究字词来源的学科。英语的“Etymology”一词本身源于“希腊语:έτυμος”(真实)与“希腊语:λόγος”(字、理性或
  • 授精授精(Insemination)是指有意、刻意的将雄性动物或精子送入雌性动物体中,使雌性动物受精,达到有性生殖目的之行为。通常发生在动物进行交配行为时,雄性哺乳动物将精子或精液输送到
  • 世界疟疾日世界疟疾日(英语:World Malaria Day)定于每年4月25日,目的是引起世界各国对疟疾的重视并发起防治行动。2007年5月,第六十届世界卫生大会会议上决定设立世界疟疾日。每年估计有3亿
  • 阿尔诺河阿诺河(意大利语:Arno),或译为阿尔诺河,是意大利托斯卡尼地区的河流,除了台伯河以外,阿诺河是意大利中部最重要的河流之一。佛罗伦斯、恩波利与比萨也位在阿诺河畔。
  • 侧链侧链指有机分子完整结构上的侧支,所以又可称之为“支链”。区块链中的侧链(sidechains)实质上不是特指某个区块链,而是指遵守侧链协议的所有区块链,该名词是相对与比特币主链来说
  • 泛节肢动物节肢动物门 Arthropoda 有爪动物门 Onychophora 缓步动物门 Tardigrata †叶足动物 “Lobopodia”泛节肢动物(拉丁语:Panarthropoda)是一个包括节肢动物门、缓步动物门、有爪动
  • 维明顿第一代维明顿伯爵斯宾塞·康普顿,KG,KB,PC (Spencer Compton, 1st Earl of Wilmington,1673年-1743年7月2日),或译威明顿伯爵、威尔明顿伯爵,英国辉格党政治家,在1715年开始一直在政府