首页 >
圆形
✍ dations ◷ 2025-04-25 07:05:05 #圆形
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用
O
{displaystyle O}
表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2,
A
{displaystyle A}
、
B
{displaystyle B}
分别为圆上任意两点,那么
A
B
¯
{displaystyle {overline {AB}}}
就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号
⌢
{displaystyle frown }
表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线
Q
P
¯
{displaystyle {overline {QP}}}
与圆只有一个交点
P
{displaystyle P}
,那么
Q
P
¯
{displaystyle {overline {QP}}}
就是圆的切线。
过圆上一点的切线:设该点为
P
(
x
o
,
y
o
)
{displaystyle P(x_{o},y_{o})}
,圆的方程为
(
x
−
a
)
2
+
(
y
−
b
)
2
=
r
2
{displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}
,则圆在该点的切线方程为:
(
x
o
−
a
)
(
x
−
a
)
+
(
y
o
−
b
)
(
y
−
b
)
=
r
2
{displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线
Q
O
¯
{displaystyle {overline {QO}}}
与圆有两个公共点,那么直线
Q
O
¯
{displaystyle {overline {QO}}}
就是圆的割线。圆的一周的长度称为圆的周长(记作
C
{displaystyle C}
)。圆的周长与半径的关系是:其中
π
{displaystyle pi }
是圆周率。圆的面积与半径的关系是:
A
=
π
r
2
{displaystyle A=pi r^{2}}
。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心
O
{displaystyle O}
的任意直线,圆的对称中心为圆心
O
{displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
如上图,
M
{displaystyle M}
为圆心,
A
,
B
,
C
{displaystyle A,B,C}
分别为圆周上的点,那么:
∠
A
M
B
=
2
∠
A
C
B
{displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径
B
E
¯
⊥
{displaystyle {overline {BE}}perp }
弦
A
C
¯
{displaystyle {overline {AC}}}
,那么
B
E
¯
{displaystyle {overline {BE}}}
平分
A
C
¯
{displaystyle {overline {AC}}}
且平分
A
C
⌢
{displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为
r
{displaystyle r}
及
R
{displaystyle R}
,圆心距为
d
{displaystyle d}
,其中
r
<
R
{displaystyle r<R}
)之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。
在方程
(
x
−
a
)
2
+
(
y
−
b
)
2
=
r
2
{displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}
中,若圆心
(
a
,
b
)
{displaystyle (a,b)}
为定点,
r
{displaystyle r}
为参变数,则它表示同心圆的圆系方程.若
r
{displaystyle r}
是常量,
a
{displaystyle a}
(或
b
{displaystyle b}
)为参变数,则它表示半径相同,圆心在同一直线上(平行于
x
{displaystyle x}
轴或
y
{displaystyle y}
轴)的圆系方程.截面为圆的三维形状有:
相关
- 硫酸硫酸(化学分子式为H2SO4)也被称为化学工业之母,是一种具有高腐蚀性的强矿物酸,一般为透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业制造过程中,硫酸也可能被染成暗
- 代谢中间产物代谢中间产物(英语:Metabolic intermediates)是指代谢途径中的中间产物。虽然这些中间产物通常对于细胞功能的影响相对较小,但他们可能在酵素的别构调节上,扮演重要的角色。有些
- 芹苴市1,235,171 population_density_km2 = auto芹苴市(越南语:Thành phố Cần Thơ/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","
- 心脏杂音心杂音是血流通过心脏瓣膜时产生的心音,可以用听诊器听见。心杂音有两种类型。功能性杂音(生理杂音)主要由心脏以外的生理构造造成;病理性杂音则是由心脏构造异常所引起。功能性
- 农业工程农业工程是把工程科学和技术知识使用于农业生产,加工以及农村生活环境改善与生态维护的工程学科。农业工程学科结合动物生物学、植物生物学和机械、土木、化学工程的知识和原
- 西妥昔单抗西妥昔单抗(Cetuximab),商品名尔必得舒®(Erbitux®),是美商英克隆公司(英语:ImClone Systems)和美商百时美施贵宝的专利药。西妥昔单抗是一种对抗表皮生长因子受体(EGFR)的单克隆抗体,
- 长度单位长度是一维空间的度量,是国际单位制的七种基础度量之一。在几何体中长度通常指最长的一维。通常在量度二维空间中量度直线边长时,称呼长度数值较大的为长,不比其值大或者在“侧
- 轮藻纲轮藻纲(Charophyceae)是绿藻中的一个分类,但它的分类地位仍有争议。有些植物学家认为可以将轮藻门和绿藻门纳入植物界中,但有些植物学家认为轮藻纲被编入绿藻门、链形植物门,或是
- 斯波尔丁县斯波尔丁县(Spalding County, Georgia)是美国乔治亚州西北部的一个县。面积517平方公里。根据美国2000年人口普查,共有人口58,417人,2005年增至61,289人。县治格里芬(Griffin)。成
- 二十四节气——中国人通过观察太阳周年运动而形成的时间知识体系及其实践节气指二十四时节和气候,是中国古代用来指导农事之历法历注。东亚传统夏历(农历)是一种“阴阳合历”,同时根据日、月运行制定,“阴”是以朔望月为基准确定,“阳”是以地球自冬至绕