圆形

✍ dations ◷ 2025-04-26 13:05:20 #圆形
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用 O {displaystyle O} 表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2, A {displaystyle A} 、 B {displaystyle B} 分别为圆上任意两点,那么 A B ¯ {displaystyle {overline {AB}}} 就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号 ⌢ {displaystyle frown } 表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线 Q P ¯ {displaystyle {overline {QP}}} 与圆只有一个交点 P {displaystyle P} ,那么 Q P ¯ {displaystyle {overline {QP}}} 就是圆的切线。 过圆上一点的切线:设该点为 P ( x o , y o ) {displaystyle P(x_{o},y_{o})} ,圆的方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} ,则圆在该点的切线方程为: ( x o − a ) ( x − a ) + ( y o − b ) ( y − b ) = r 2 {displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线 Q O ¯ {displaystyle {overline {QO}}} 与圆有两个公共点,那么直线 Q O ¯ {displaystyle {overline {QO}}} 就是圆的割线。圆的一周的长度称为圆的周长(记作 C {displaystyle C} )。圆的周长与半径的关系是:其中 π {displaystyle pi } 是圆周率。圆的面积与半径的关系是: A = π r 2 {displaystyle A=pi r^{2}} 。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心 O {displaystyle O} 的任意直线,圆的对称中心为圆心 O {displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 如上图, M {displaystyle M} 为圆心, A , B , C {displaystyle A,B,C} 分别为圆周上的点,那么: ∠ A M B = 2 ∠ A C B {displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径 B E ¯ ⊥ {displaystyle {overline {BE}}perp } 弦 A C ¯ {displaystyle {overline {AC}}} ,那么 B E ¯ {displaystyle {overline {BE}}} 平分 A C ¯ {displaystyle {overline {AC}}} 且平分 A C ⌢ {displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为 r {displaystyle r} 及 R {displaystyle R} ,圆心距为 d {displaystyle d} ,其中 r < R {displaystyle r<R} )之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。 在方程 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} 中,若圆心 ( a , b ) {displaystyle (a,b)} 为定点, r {displaystyle r} 为参变数,则它表示同心圆的圆系方程.若 r {displaystyle r} 是常量, a {displaystyle a} (或 b {displaystyle b} )为参变数,则它表示半径相同,圆心在同一直线上(平行于 x {displaystyle x} 轴或 y {displaystyle y} 轴)的圆系方程.截面为圆的三维形状有:

相关

  • H2受体阻抗剂H2受体阻抗剂(英语:H2 antagonist)是一系列用于阻断组织胺作用于胃壁细胞、减少壁细胞分泌胃酸的药物。H2受体阻抗剂用于治疗消化不良,但现在已经有效果更好的氢离子泵阻断剂。
  • 黑人手语美国黑人手语(英语:Black American Sign Language,缩写作 BASL)又名黑人手语分支(Black Sign Variation,缩写作 BSV),是美国手语方言,在美国的非裔聋哑人群体中最为常见。作为美国手
  • Netscape ISP网景通信(英语:Netscape Communications ),以前称为网景通信公司(Netscape Communications Corporation),大部分通常被简称为网景(Netscape)。网景曾经是一家美国的电脑服务公司,以其
  • 头后大直肌头后大直肌(rectus capitis posterior major muscle)以点状的腱起始于轴椎的棘突,然后在上升中逐渐变宽,最后附着至枕骨的下项线及略低此线的骨头的表面。因为两侧的肌肉向上和
  • 四价铵化合物季铵盐,又称四级铵盐是铵离子的四个氢离子都被烃基取代后形成的季铵阳离子的盐,具有通式 R4N+X−。其中四个烃基可以相同,也可以不相同,X−多为卤素阴离子,HSO4−,RCOO−及OH−(季
  • 第71名索引 国防预算 石油储量 军事(武装部队) 死刑 国债 生育率 最高点 官方语言 地理 政体 面积 代码 陆地面积 人口 人口密度 国内生产总值 国徽 国旗 国歌 国家格言 首都 城市
  • 钠-23钠-23(23Na)是钠元素其中的一种最稳定、含量最丰富的同位素。已发现钠的同位素有15种,包括钠19至钠33,其中只有钠23是稳定的,其他同位素都带有放射性。原子量是22.98977 u。 过
  • 甘子钊甘子钊(1938年4月16日-),生于广东信宜,中国物理学家。1959年毕业于北京大学物理系,1963年该校研究生毕业。1991年当选为中国科学院学部委员(院士)。 北京大学教授及固体物理研究所
  • 罗伦佐的油罗伦佐的油(Lorenzo's oil)是三油酸甘油酯(glycerol trioleate)与三芥子酸甘油脂(glycerol trierucate)的4:1比例的混合物,两种脂质分别是油酸(oleic acid)与芥子酸(erucic acid)的三酸
  • 壁炉壁炉是一种建筑元件,里面有一个空间可以放置柴火,通常用于取暖,但有时也用来烹煮食物。放置柴火的地方称为燃烧室。烟囱或其他烟道,引导燃烧产生的气体和微粒废气离开建筑物。虽