首页 >
圆形
✍ dations ◷ 2025-05-16 20:19:26 #圆形
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用
O
{displaystyle O}
表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2,
A
{displaystyle A}
、
B
{displaystyle B}
分别为圆上任意两点,那么
A
B
¯
{displaystyle {overline {AB}}}
就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号
⌢
{displaystyle frown }
表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线
Q
P
¯
{displaystyle {overline {QP}}}
与圆只有一个交点
P
{displaystyle P}
,那么
Q
P
¯
{displaystyle {overline {QP}}}
就是圆的切线。
过圆上一点的切线:设该点为
P
(
x
o
,
y
o
)
{displaystyle P(x_{o},y_{o})}
,圆的方程为
(
x
−
a
)
2
+
(
y
−
b
)
2
=
r
2
{displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}
,则圆在该点的切线方程为:
(
x
o
−
a
)
(
x
−
a
)
+
(
y
o
−
b
)
(
y
−
b
)
=
r
2
{displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线
Q
O
¯
{displaystyle {overline {QO}}}
与圆有两个公共点,那么直线
Q
O
¯
{displaystyle {overline {QO}}}
就是圆的割线。圆的一周的长度称为圆的周长(记作
C
{displaystyle C}
)。圆的周长与半径的关系是:其中
π
{displaystyle pi }
是圆周率。圆的面积与半径的关系是:
A
=
π
r
2
{displaystyle A=pi r^{2}}
。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心
O
{displaystyle O}
的任意直线,圆的对称中心为圆心
O
{displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
如上图,
M
{displaystyle M}
为圆心,
A
,
B
,
C
{displaystyle A,B,C}
分别为圆周上的点,那么:
∠
A
M
B
=
2
∠
A
C
B
{displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径
B
E
¯
⊥
{displaystyle {overline {BE}}perp }
弦
A
C
¯
{displaystyle {overline {AC}}}
,那么
B
E
¯
{displaystyle {overline {BE}}}
平分
A
C
¯
{displaystyle {overline {AC}}}
且平分
A
C
⌢
{displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为
r
{displaystyle r}
及
R
{displaystyle R}
,圆心距为
d
{displaystyle d}
,其中
r
<
R
{displaystyle r<R}
)之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。
在方程
(
x
−
a
)
2
+
(
y
−
b
)
2
=
r
2
{displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}}
中,若圆心
(
a
,
b
)
{displaystyle (a,b)}
为定点,
r
{displaystyle r}
为参变数,则它表示同心圆的圆系方程.若
r
{displaystyle r}
是常量,
a
{displaystyle a}
(或
b
{displaystyle b}
)为参变数,则它表示半径相同,圆心在同一直线上(平行于
x
{displaystyle x}
轴或
y
{displaystyle y}
轴)的圆系方程.截面为圆的三维形状有:
相关
- 豇豆花叶病毒豇豆镶嵌病毒, SB isolate豇豆花叶病毒(Cowpea Mosaic Virus)又名豇豆黄花叶病毒,分布在尼日利亚、古巴和美国等国。苏里南、古巴和美国等地寄主范围很窄,在豆科植物以外就很
- 吞噬细胞吞噬细胞为一类防卫细胞,它们透过吞噬细菌、坏死细胞和凋亡细胞等有害物质来保卫有机体。其原文“Phagocytes”的前半部来自希腊语“phagein”(意为“食用、吞食”),后半部“-cy
- 东北部美国东北部为美国人口调查局所定义的美国地区。美国东北部北临加拿大,西临中西部,南接美国南部,东向大西洋。此区域乃美国工商业最发达的区域及都市化程度最高的区域,美国第一大
- 污染者自付原则污染者自付原则(英语:polluter-pays principle,略称PPP),又称污者自付原则,是一个环境法上的概念,要求制造污染者需要自己付出清除污染的代价。这项原则在1992年6月于巴西里约热内
- Stanozolol康力龙也称司坦唑醇(Stanozolol),雄激素类药物。白色粉末状无臭。几乎不溶于水,能溶于油脂。用于慢性消耗性疾病、纠正重症术后消瘦负氮平衡、男性性腺功能减退、骨质疏松症、小
- ZZ, z是拉丁字母中的第26个字母,也是最后一个字母。这个字母的英语念法有2种:英国等大部分英语口音会念作.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Lin
- 艾普利亚阿普利亚(意大利语:Aprilia)是意大利摩托车制造公司比亚乔旗下的一个子品牌,旗下的产品为摩托车。该公司于1968年生产出第一辆摩托车。在创立之初,以制造踏板式摩托车及小排量摩
- 叶足动物门叶足动物(学名:Lobopodia)是一类可以追溯至寒武纪时代的并系群,对于当中绝大部分至今仍然所知不多。此类下的动物具体节,有足,同时却很难被分类到节肢动物的范畴。基本上这类动物
- 雪莉酒雪利酒(西班牙语:Jerez .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gentiu
- 胆烷酸熊去氧胆酸(英语:Ursodeoxycholic acid,也被称为3α,7β-二羟基-5β-胆烷-24-羧酸,3α,7β-dihydroxy-5β-cholan-24-oic acid,缩写 UDCA),是一种来自熊胆的胆汁酸,为次级胆汁酸,由初