圆形

✍ dations ◷ 2025-04-04 11:04:04 #圆形
圆 (英语:Circle),根据欧几里得的《几何原本》定义,是在同一平面内到定点的距离等于定长的点的集合。此外,圆的第二定义是:“平面内一动点到两定点的距离的比,等于一个常数,则此动点的轨迹是圆。”古代人最早是从太阳、阴历十五的月亮得到圆的概念的。在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很像圆。到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。古代人还发现搬运圆的木头时滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。 古代埃及人认为:圆,是神赐给人的神圣图形。一直到两千多年前中国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。圆是在同一平面内到定点的距离等于定长的点的集合,这个定点叫做圆的圆心(通常用 O {displaystyle O} 表示)。圆周上任何两点相连的线段称为圆的弦(英语:chord)。如图2, A {displaystyle A} 、 B {displaystyle B} 分别为圆上任意两点,那么 A B ¯ {displaystyle {overline {AB}}} 就是圆的弦圆周上任意两点间的部分叫做弧(英语:arc),通常用符号 ⌢ {displaystyle frown } 表示。弧分为半圆、优弧、劣弧三种。假如一条直线与圆相交仅有一个交点,那么称这条直线是这个圆的切线,与圆相交的点叫做切点。如如下图,直线 Q P ¯ {displaystyle {overline {QP}}} 与圆只有一个交点 P {displaystyle P} ,那么 Q P ¯ {displaystyle {overline {QP}}} 就是圆的切线。 过圆上一点的切线:设该点为 P ( x o , y o ) {displaystyle P(x_{o},y_{o})} ,圆的方程为 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} ,则圆在该点的切线方程为: ( x o − a ) ( x − a ) + ( y o − b ) ( y − b ) = r 2 {displaystyle (x_{o}-a)(x-a)+(y_{o}-b)(y-b)=r^{2}}一条直线与一条弧线有两个公共点,这条直线是这条曲线的割线(英语:Secant Theorem)。如图,直线 Q O ¯ {displaystyle {overline {QO}}} 与圆有两个公共点,那么直线 Q O ¯ {displaystyle {overline {QO}}} 就是圆的割线。圆的一周的长度称为圆的周长(记作 C {displaystyle C} )。圆的周长与半径的关系是:其中 π {displaystyle pi } 是圆周率。圆的面积与半径的关系是: A = π r 2 {displaystyle A=pi r^{2}} 。圆既是轴对称图形又是中心对称图形,圆的对称轴为经过圆心 O {displaystyle O} 的任意直线,圆的对称中心为圆心 O {displaystyle O}同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等,此定理也称“一推三定理”。圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 如上图, M {displaystyle M} 为圆心, A , B , C {displaystyle A,B,C} 分别为圆周上的点,那么: ∠ A M B = 2 ∠ A C B {displaystyle angle AMB=2;angle ACB}圆周角定理的推论:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。如图,直径 B E ¯ ⊥ {displaystyle {overline {BE}}perp } 弦 A C ¯ {displaystyle {overline {AC}}} ,那么 B E ¯ {displaystyle {overline {BE}}} 平分 A C ¯ {displaystyle {overline {AC}}} 且平分 A C ⌢ {displaystyle {overset {frown }{AC}}}两个不同大小的圆(半径分别为 r {displaystyle r} 及 R {displaystyle R} ,圆心距为 d {displaystyle d} ,其中 r < R {displaystyle r<R} )之间的关系如下:在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。例如求半径到直线距离的方程就可以叫圆系方程。 在方程 ( x − a ) 2 + ( y − b ) 2 = r 2 {displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}} 中,若圆心 ( a , b ) {displaystyle (a,b)} 为定点, r {displaystyle r} 为参变数,则它表示同心圆的圆系方程.若 r {displaystyle r} 是常量, a {displaystyle a} (或 b {displaystyle b} )为参变数,则它表示半径相同,圆心在同一直线上(平行于 x {displaystyle x} 轴或 y {displaystyle y} 轴)的圆系方程.截面为圆的三维形状有:

相关

  • 绿脓杆菌绿脓杆菌,又称铜绿假单胞菌(学名:Pseudomonas aeruginosa),是一种革兰氏阴性菌、好氧、呈长棒形的细菌,只有单向的运动性。它是一种机会性感染细菌,且对植物亦是机会性感染的。与其
  • 音位音位(英语:Phoneme),又译音素,是人类语言中能够区别意义的最小声音单位,是音位学分析的基础概念。一个字或词可由一至数个音节组成,一个音节可由一至数个“音段”(元音、辅音等)组成
  • 苯佐卡因苯佐卡因(Benzocaine),又称“阿奈斯台辛”(Anaesthesine),学名对氨基苯甲酸乙酯。无色或白色斜方结晶粉末。无臭,味微苦,后有麻醉感。遇光逐渐变色。难溶于水,微溶于脂肪油,溶于稀酸、
  • 希波纳克斯希波纳克斯(英语:Hipponax),(前540年-前487年)。古希腊以弗所的抑扬格诗人之一。后被放逐到科拉佐美纳埃。他创作有讽刺、粗俗甚至是辱骂性的诗歌,为跛脚音步的创始人。亦是模仿滑籍
  • 禁欲禁欲是一种生活型态,其特征通常是对若干俗世欢愉的禁绝,以达至宗教上及灵性上的目标。基督宗教(特别是修道运动)及印度宗教(包括瑜伽)的教导,涉及到“意志—身体”转化的过程,此过程
  • 乔治·A·米勒乔治·阿米蒂奇·米勒(英语:George Armitage Miller,1920年2月3日-2012年7月22日)是普林斯顿大学的心理学教授。曾经担任洛克斐勒大学、麻省理工学院心理学教授以及哈佛大学心理
  • 不良作用不良反应(英文:adverse effect),在医学领域,又称为不良作用、不良影响、不良后果,是指一种有害的,人们所不希望出现的,由于某种药物或其他诸如化疗或手术之类的医疗所造成的反应、效
  • 遮罗迦本集遮罗迦本集(梵语:चरक संहिता,转写:caraka-saṃhitā)是一部以梵语撰写的阿育吠陀(印度传统医学)文献。它与《妙闻集(英语:Sushruta Samhita)》共同为古印度在此领域中流传下
  • 米夏埃尔·哈内克迈克尔·哈内克(德语:Michael Haneke,1942年3月23日-),奥地利电影导演,生于德国慕尼黑。迈克尔·哈内克的作品可分为奥地利时期跟法国时期,以社会议题而闻名于世。他的法国时期有两
  • 唐纳德·格拉泽唐纳德·格拉泽(英语:Donald Arthur Glaser,全称唐纳德·阿瑟·格拉泽,1926年9月21日-2013年2月28日),美国物理学家,1960年获得诺贝尔物理学奖。1926年出生于俄亥俄州克利夫兰。1950