素数倒数幻方

✍ dations ◷ 2025-11-30 03:56:12 #趣味数学,幻方

素数倒数幻方(prime reciprocal magic square)是指用素数倒数及其倍数的循环小数各位数组成的幻方。有些素数的倒数则可以形成对角线和也满足条件的幻方。

考虑在十进制下的1/7,其小数为循环小数1/7 = 0·142857142857142857...,若再考虑其倍数,会看到这六个数字的循环排列(英语:cyclic permutation):

1/7 = 0·1 4 2 8 5 7...2/7 = 0·2 8 5 7 1 4...3/7 = 0·4 2 8 5 7 1...4/7 = 0·5 7 1 4 2 8...5/7 = 0·7 1 4 2 8 5...6/7 = 0·8 5 7 1 4 2...

若用上述数字形成方阵,每一列的和是1+4+2+8+5+7,即为27,每一行的和也是27,若不考虑对角线,因此可以形成一个幻方:

1 4 2 8 5 72 8 5 7 1 44 2 8 5 7 15 7 1 4 2 87 1 4 2 8 58 5 7 1 4 2

不过其对角线不是27。

考虑1/19的倍数,下一行是上一行的二倍,而小数位数似乎右移一位:

01/19 = 0.052631578,94736842102/19 = 0.1052631578,9473684204/19 = 0.21052631578,947368408/19 = 0.421052631578,94736816/19 = 0.8421052631578,94736

分子乘以2会让小数的位数右移一位:

在1/19形成的方阵中,其最大周期为18,每一行及每一列的和是81,而且对角线也是81,完全符合幻方的条件:

01/19 = 0·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1...02/19 = 0·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2...03/19 = 0·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3...04/19 = 0·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4...05/19 = 0·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5...06/19 = 0·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6...07/19 = 0·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7...08/19 = 0·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8...09/19 = 0·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9...10/19 = 0·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0...11/19 = 0·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1...12/19 = 0·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2...13/19 = 0·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3...14/19 = 0·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4...15/19 = 0·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5...16/19 = 0·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6...17/19 = 0·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7...18/19 = 0·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8...

在各素数在不同进制下,也可能会有相同的现象,以下是列表,列出素数、进制以及幻方和 ((进制-1) 乘 (素数-1) / 2:

Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158–160, 1957.

Weisstein, Eric W. "Midy's Theorem." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/MidysTheorem.html

相关

  • 逻辑史逻辑史,又称理则史,指逻辑学的发展史。在古埃及和巴比伦都发现逻辑学的萌芽。但现在所使用的逻辑学产生于古希腊时期。与此同时,印度和中国也独立地发展了逻辑学。中国古代逻辑
  • 固氮生物固氮生物(英语:Diazotroph)多为细菌及古菌,能将空气中的氮气固定为较有用的形式,例如︰氨。固氮生物是能不透过外在资源而固氮的有机体。举例来说,这样的有机体包含︰根瘤菌及属于放射
  • 最佳导演奖奥斯卡最佳导演奖(英语:Academy Award for Best Directing),由美国电影艺术与科学学院通过业内人士投票,颁给每年得票最高的导演,奥斯卡金像奖之一。每一年度第一部影片为得奖影片
  • M3反坦克炮第二次世界大战时美军的反坦克炮有75毫米口径M1A1和37毫米口径M3两种,由于在欧洲战场上的纳粹德军的坦克大多甲坚炮利,故美军以威力较强的M1A1主打欧洲,而M3则留在东亚和太平洋
  • 瓯塑瓯塑俗称油泥塑,是浙江省温州市独有的传统美术工艺,被誉为“立体油画”。亦是浙江省人民政府认定的首批“浙江传统优秀工艺美术品类”之一。2006年,列入第一批浙江省非物质文化
  • 2007年–2008年环球金融危机name = 'Transport',description = '交通',content = {{ type = 'text', text = ] },{ type = 'item', original = 'articulated bus', rule = 'zh-cn:铰接客车;zh-tw:双节
  • 量子跃迁量子跃迁,是一个量子物理学中的术语。它是指电子从原子的一个轨道跳跃到另一个轨道上的过程,这一过程是不连续的,也就是不存在电子处于两个轨道之间的状态。YouTube上的视频
  • 比特鲁特国家森林比特鲁特国家森林(英语:Bitterroot National Forest)是一处美国国家森林,占地面积1,587 × 103英亩(6,420平方千米),地处美国蒙大拿州中西部,爱达荷州西部。它主要位于蒙大拿州的拉
  • 三十二相八十种好庄严.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-setti
  • 库尔特·舒施尼格库尔特·舒施尼格(Kurt Schuschnigg,1897年12月14日-1977年11月18日),原名库尔特·冯·舒施尼格(Kurt von Schuschnigg),是一名奥地利政治家,在1934年接替被刺杀的恩格尔伯特·陶尔斐