素数倒数幻方

✍ dations ◷ 2025-11-16 06:27:24 #趣味数学,幻方

素数倒数幻方(prime reciprocal magic square)是指用素数倒数及其倍数的循环小数各位数组成的幻方。有些素数的倒数则可以形成对角线和也满足条件的幻方。

考虑在十进制下的1/7,其小数为循环小数1/7 = 0·142857142857142857...,若再考虑其倍数,会看到这六个数字的循环排列(英语:cyclic permutation):

1/7 = 0·1 4 2 8 5 7...2/7 = 0·2 8 5 7 1 4...3/7 = 0·4 2 8 5 7 1...4/7 = 0·5 7 1 4 2 8...5/7 = 0·7 1 4 2 8 5...6/7 = 0·8 5 7 1 4 2...

若用上述数字形成方阵,每一列的和是1+4+2+8+5+7,即为27,每一行的和也是27,若不考虑对角线,因此可以形成一个幻方:

1 4 2 8 5 72 8 5 7 1 44 2 8 5 7 15 7 1 4 2 87 1 4 2 8 58 5 7 1 4 2

不过其对角线不是27。

考虑1/19的倍数,下一行是上一行的二倍,而小数位数似乎右移一位:

01/19 = 0.052631578,94736842102/19 = 0.1052631578,9473684204/19 = 0.21052631578,947368408/19 = 0.421052631578,94736816/19 = 0.8421052631578,94736

分子乘以2会让小数的位数右移一位:

在1/19形成的方阵中,其最大周期为18,每一行及每一列的和是81,而且对角线也是81,完全符合幻方的条件:

01/19 = 0·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1...02/19 = 0·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2...03/19 = 0·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3...04/19 = 0·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4...05/19 = 0·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5...06/19 = 0·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6...07/19 = 0·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7...08/19 = 0·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8...09/19 = 0·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9...10/19 = 0·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0...11/19 = 0·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1...12/19 = 0·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2...13/19 = 0·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3...14/19 = 0·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4...15/19 = 0·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5...16/19 = 0·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6...17/19 = 0·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7...18/19 = 0·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8...

在各素数在不同进制下,也可能会有相同的现象,以下是列表,列出素数、进制以及幻方和 ((进制-1) 乘 (素数-1) / 2:

Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158–160, 1957.

Weisstein, Eric W. "Midy's Theorem." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/MidysTheorem.html

相关

  • 元数据元数据(英语:metadata),又称诠释数据、中介数据、中继数据、后设数据等,为描述其他数据信息的数据。有三种不同类型的元数据,分别是记叙性元数据、结构性元数据和管理性元数据。主
  • 墨角藻糖墨角藻糖(英文:Fuculose),即6-脱氧-L-塔格糖,是一种脱氧的己酮糖。它与核糖、半乳糖、甘露糖、胺基葡萄糖同为禽流感病毒粒子的重要组成部分之一。果聚糖:菊粉 · 果聚糖β2→6
  • 免疫功能不佳免疫抑制(英语:immunosuppression)是指对于免疫应答的抑制作用。免疫抑制可由天然或人为因素导致。天然免疫抑制包括天然免疫耐受,机体可能会对自身组织成分不产生免疫应答。人
  • 无尘室净室,又称无尘室、洁净室或清净室,是指一个具有低污染水平的环境,这里所指的污染来源有灰尘,空气传播的微生物,悬浮颗粒,和化学挥发性气体。更准确地讲,一个净室具有一个受控的污染
  • 美国国道60美国国道60是一条横越美国东西方的公路,全长2,670英哩(4,300公里),从维吉尼亚到亚利桑那。
  • 时代精神运动债该死运动(The Zeitgeist Movement, TZM),旧译时代精神,由彼得・约瑟夫(英语:Peter Joseph)于2008年发起,是一个提倡永续发展的全球性草根组织,通过分布于全球/区域性的分部、专案小
  • 埃及第二十一王朝第 八第 十埃及第二十一王朝是古埃及第三中间时期的一个王朝,其首都位于塔尼斯,因此又被称为塔尼斯王朝。第二十一王朝与第二十二王朝、第二十三王朝、第二十四王朝、第二十五
  • 无畏级星舰无畏级(Intrepid Class),是科幻系列《星际迷航》(Star Trek)中,隶属于星际联邦星际舰队的一个星舰级别。在《星际迷航》第四部正典电视剧《星际迷航:航海家号》的主角舰联邦星舰航
  • 郭慕孙郭慕孙(1920年5月9日-2012年11月20日),中国化学工程学家,中国流态化学科研究的开拓者,原籍广东潮阳,生于湖北汉阳。1980年当选为中国科学院学部委员(院士),1997年当选为瑞士工程科学院
  • 高英培高英培(1927年-2002年2月14日),天津人,中国相声表演艺术家。1948年,高英培师从赵佩茹先生。后在天津市和平区曲艺杂技团与范振钰合作。