素数倒数幻方

✍ dations ◷ 2025-06-08 03:52:08 #趣味数学,幻方

素数倒数幻方(prime reciprocal magic square)是指用素数倒数及其倍数的循环小数各位数组成的幻方。有些素数的倒数则可以形成对角线和也满足条件的幻方。

考虑在十进制下的1/7,其小数为循环小数1/7 = 0·142857142857142857...,若再考虑其倍数,会看到这六个数字的循环排列(英语:cyclic permutation):

1/7 = 0·1 4 2 8 5 7...2/7 = 0·2 8 5 7 1 4...3/7 = 0·4 2 8 5 7 1...4/7 = 0·5 7 1 4 2 8...5/7 = 0·7 1 4 2 8 5...6/7 = 0·8 5 7 1 4 2...

若用上述数字形成方阵,每一列的和是1+4+2+8+5+7,即为27,每一行的和也是27,若不考虑对角线,因此可以形成一个幻方:

1 4 2 8 5 72 8 5 7 1 44 2 8 5 7 15 7 1 4 2 87 1 4 2 8 58 5 7 1 4 2

不过其对角线不是27。

考虑1/19的倍数,下一行是上一行的二倍,而小数位数似乎右移一位:

01/19 = 0.052631578,94736842102/19 = 0.1052631578,9473684204/19 = 0.21052631578,947368408/19 = 0.421052631578,94736816/19 = 0.8421052631578,94736

分子乘以2会让小数的位数右移一位:

在1/19形成的方阵中,其最大周期为18,每一行及每一列的和是81,而且对角线也是81,完全符合幻方的条件:

01/19 = 0·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1...02/19 = 0·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2...03/19 = 0·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3...04/19 = 0·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4...05/19 = 0·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5...06/19 = 0·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6...07/19 = 0·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7...08/19 = 0·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8...09/19 = 0·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9...10/19 = 0·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0...11/19 = 0·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1...12/19 = 0·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2...13/19 = 0·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3...14/19 = 0·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4...15/19 = 0·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5...16/19 = 0·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6...17/19 = 0·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7...18/19 = 0·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8...

在各素数在不同进制下,也可能会有相同的现象,以下是列表,列出素数、进制以及幻方和 ((进制-1) 乘 (素数-1) / 2:

Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158–160, 1957.

Weisstein, Eric W. "Midy's Theorem." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/MidysTheorem.html

相关

  • 本都统治者列表这是一份本都王国统治者的列表。本都是希腊化时代安纳托利亚的一个重要王国,其国王可能具有伊朗血统。
  • 副交感神经副交感神经系统(Parasympathetic system)是自律神经系统的两个部分其中之一,另一个部分是交感神经系统。(肠神经系统(ENS)现在通常被称为一个独立的系统,因为它有自己独立的反射活
  • Cusub2/subS硫化亚铜,分子式为Cu2S,在自然界中形成辉铜矿。硫化亚铜有很窄的化学计量变化范围: Cu1.997S至Cu2.000S。Cu2S可由热的铜在硫蒸气或H2S反应制得。铜粉在熔融的硫中快速反应生成
  • 硬脂酸硬脂酸(IUPAC系统命名法:十八酸,英语:Stearic acid)是一种饱和脂肪酸。它是一种难溶于水的蜡状固体,化学式C18H36O2,可溶于乙醇和丙酮,易溶于乙醚、氯仿、四氯化碳、苯和二硫化碳等
  • 对映体对映异构体(英语:Enantiomer (/ɪˈnæntiəmər, ɛ-, -tioʊ-/ ə-NAN-tee-ə-mər)),又称对掌异构物、光学异构物、镜像异构物或旋光异构体,不能与彼此立体异构体镜像完全重叠
  • 刘得金刘得金(1962年-),中华民国陆军中将、本省人,台湾省新竹县芎林乡文林村(旧称纸寮窝)客家人,现任陆军第二副司令,于2012年7月1日接任第28任中华民国陆军军官学校少将校长,是陆军官校第一
  • 360安全浏览器360安全浏览器(360浏览器;英语:360 Safety Browser)是360安全中心推出一款基于IE和Chrome的双核浏览器,是世界之窗开发者凤凰工作室和360安全中心合作编写的软件,其沙盘安全技术是
  • 莫拉尔吉·德赛莫拉尔吉·兰乔吉·德赛(印地语:मोरारजी देसाई,1896年2月29日-1995年4月10日),印度政治家,曾任印度总理。德赛曾是吉尼斯世界纪录认定的世界上当选总理时年龄最大(81岁)
  • PSR B0943+10PSR B0943+10是一颗位于狮子座距离地球2000光年的脉冲星。PSR B0943+10预计年龄为500万年,是一颗相对较早形成的脉冲星。PSR B0943+10的自转周期为1.1秒,并向四周放射无线电波
  • Joy (Red Velvet)朴秀英(朝鲜语:박수영 ,英语:Park Soo Young,1996年9月3日-),艺名Joy(朝鲜语:조이 ,日语:ジョイ),韩国女歌手及演员,为韩国女子团体Red Velvet的领Rapper和副唱。常见译名为朴秀荣及朴首