素数倒数幻方

✍ dations ◷ 2025-12-02 02:09:40 #趣味数学,幻方

素数倒数幻方(prime reciprocal magic square)是指用素数倒数及其倍数的循环小数各位数组成的幻方。有些素数的倒数则可以形成对角线和也满足条件的幻方。

考虑在十进制下的1/7,其小数为循环小数1/7 = 0·142857142857142857...,若再考虑其倍数,会看到这六个数字的循环排列(英语:cyclic permutation):

1/7 = 0·1 4 2 8 5 7...2/7 = 0·2 8 5 7 1 4...3/7 = 0·4 2 8 5 7 1...4/7 = 0·5 7 1 4 2 8...5/7 = 0·7 1 4 2 8 5...6/7 = 0·8 5 7 1 4 2...

若用上述数字形成方阵,每一列的和是1+4+2+8+5+7,即为27,每一行的和也是27,若不考虑对角线,因此可以形成一个幻方:

1 4 2 8 5 72 8 5 7 1 44 2 8 5 7 15 7 1 4 2 87 1 4 2 8 58 5 7 1 4 2

不过其对角线不是27。

考虑1/19的倍数,下一行是上一行的二倍,而小数位数似乎右移一位:

01/19 = 0.052631578,94736842102/19 = 0.1052631578,9473684204/19 = 0.21052631578,947368408/19 = 0.421052631578,94736816/19 = 0.8421052631578,94736

分子乘以2会让小数的位数右移一位:

在1/19形成的方阵中,其最大周期为18,每一行及每一列的和是81,而且对角线也是81,完全符合幻方的条件:

01/19 = 0·0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1...02/19 = 0·1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2...03/19 = 0·1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3...04/19 = 0·2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8 4...05/19 = 0·2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5...06/19 = 0·3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6...07/19 = 0·3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7...08/19 = 0·4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6 8...09/19 = 0·4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9...10/19 = 0·5 2 6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0...11/19 = 0·5 7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1...12/19 = 0·6 3 1 5 7 8 9 4 7 3 6 8 4 2 1 0 5 2...13/19 = 0·6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3...14/19 = 0·7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8 9 4...15/19 = 0·7 8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5...16/19 = 0·8 4 2 1 0 5 2 6 3 1 5 7 8 9 4 7 3 6...17/19 = 0·8 9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7...18/19 = 0·9 4 7 3 6 8 4 2 1 0 5 2 6 3 1 5 7 8...

在各素数在不同进制下,也可能会有相同的现象,以下是列表,列出素数、进制以及幻方和 ((进制-1) 乘 (素数-1) / 2:

Rademacher, H. and Toeplitz, O. The Enjoyment of Mathematics: Selections from Mathematics for the Amateur. Princeton, NJ: Princeton University Press, pp. 158–160, 1957.

Weisstein, Eric W. "Midy's Theorem." From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/MidysTheorem.html

相关

  • 耳鼻喉/头颈外科耳鼻喉科学(Otorhinolaryngology /oʊtoʊˌraɪnoʊˌlærənˈɡɒlədʒi/;亦称为:otolaryngology-head and neck surgery)是一门医学专科,专门研究耳、鼻、喉病变的诊断及治
  • 卡(Qa'a)是古埃及第一王朝的最后一位法老。其位于阿拜多斯的陵墓十分庞大,面积达到了98.5×75.5英尺(或30×23米)。据曼涅托之记载,卡的统治期长达26年——如果卡即为其书中记载的
  • 行星轨道在物理学中,轨道是一个物体在引力作用下绕空间中一点运行的路径,比如行星绕一颗恒星的轨迹,或天然卫星绕一颗行星的轨迹。行星的轨道一般都是椭圆,而且其绕行的质量中心在椭圆的
  • 儿童人权儿童人权(英文:Children's rights),指的是儿童享有的各项权利,是人权的一部分。儿童人权着重强调对未成年人的特别保护及关爱。1989年联合国签署的《儿童权利公约》中将“儿童”
  • 燃料化学工业部中华人民共和国化学工业部是中华人民共和国国务院曾经存在的部门,1956年5月成立。1970年6月煤炭工业部、石油工业部和化学工业部合并,成立燃料化学工业部。1975年2月,撤销燃料
  • 严於信严於信(1987年1月28日-),本名闫於信,生于浙江省台州市,籍贯陕西省,为中国中央电视台主持人。
  • 罗贝尔·巴丹泰罗贝尔·巴丹泰(法语:Robert Badinter,1928年3月30日-),法国律师、教授、随笔作家以及政治家。出生于巴黎。作为1986年到1995年间宪法委员会主席,他因执着斗争于废除死刑和让失足者
  • 期盼《Hope》是美国DJ兼制作人二人组烟鬼组合的一首歌曲。这首歌曲在2018年12月14日通过破坏者唱片(英语:Disruptor Records)和哥伦比亚唱片发行,威诺纳·奥克(英语:Winona Oak)客串该
  • 陈翟苏妮索尼亚·罗莎·张-迪亚兹(英语:Sonia Rosa Chang-Díaz,1978年3月31日-),汉名陈翟苏妮(原译张松妮),美国政治人物,民主党党员,现任马萨诸塞州州参议员,代表萨福克郡第二选区(2nd Suffolk
  • 福尔考什·吉泽尔洛福尔考什·吉泽尔洛(匈牙利语:Farkas Gizella,1925年11月18日-1996年6月17日),出生于在米什科尔茨,匈牙利女子乒乓球运动员。她曾获得10枚世界乒乓球锦标赛金牌。