薛定谔绘景

✍ dations ◷ 2025-04-03 17:01:39 #薛定谔绘景
薛定谔绘景(Schrödinger picture)是量子力学的一种表述,为纪念物理学者埃尔温·薛定谔而命名。在薛定谔绘景里,量子系统的态矢量随着时间流易而演化,而像位置、自旋一类的对应于可观察量的算符则与时间无关。薛定谔绘景与海森堡绘景、狄拉克绘景不同。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。在狄拉克绘景里,态矢量与算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从 t 0 {displaystyle t_{0}} 流易到 t {displaystyle t} ,而经过这段时间间隔,态矢量 | ψ ( t 0 ) ⟩ {displaystyle |psi (t_{0})rangle } 演化为态矢量 | ψ ( t ) ⟩ {displaystyle |psi (t)rangle } ,这时间演化过程以方程表示为其中, U ( t , t 0 ) {displaystyle U(t,t_{0})} 是时间演化算符。假设系统的哈密顿量 H {displaystyle H} 不含时,则时间演化算符为其中, ℏ {displaystyle hbar } 是约化普朗克常数,指数函数 e − i H ( t − t 0 ) / ℏ {displaystyle e^{-iH(t-t_{0})/hbar }} 必须通过其泰勒级数计算。在初级量子力学教科书里,时常会使用薛定谔绘景。:第2章第25页时间演化算符 U ( t , t 0 ) {displaystyle U(t,,t_{0})} 定义为其中,右矢 | ψ ( t ) ⟩ {displaystyle |psi (t)rangle } 表示时间为 t {displaystyle t} 的态矢量, U ( t , t 0 ) {displaystyle U(t,,t_{0})} 是时间演化算符,从时间 t {displaystyle t} 演化到时间 t 0 {displaystyle t_{0}} 。这方程可以做这样解释:将时间演化算符 U ( t , t 0 ) {displaystyle U(t,,t_{0})} 作用于时间是 t 0 {displaystyle t_{0}} 的态矢量 | ψ ( t 0 ) ⟩ {displaystyle |psi (t_{0})rangle } ,则会得到时间是 t {displaystyle t} 的态矢量 | ψ ( t ) ⟩ {displaystyle |psi (t)rangle } 。类似地,也可以用左矢 ⟨ ψ | {displaystyle langle psi |} 来定义:其中,算符 U † {displaystyle U^{dagger }} 是算符 U {displaystyle U} 的厄米共轭。由于态矢量必须满足归一条件,态矢量的范数不能随时间而变::66-69可是,所以,其中, I {displaystyle I} 是单位算符。时间演化算符 U ( t 0 , t 0 ) {displaystyle U(t_{0},,t_{0})} 必须是单位算符 U ( t 0 , t 0 ) = I {displaystyle U(t_{0},,t_{0})=I} ,因为,:66-69从初始时间 t 0 {displaystyle t_{0}} 到最后时间 t {displaystyle t} 的时间演化算符,可以视为从中途时间 t 1 {displaystyle t_{1}} 到最后时间 t {displaystyle t} 的时间演化算符,乘以从初始时间 t 0 {displaystyle t_{0}} 到中途时间 t 1 {displaystyle t_{1}} 的时间演化算符:66-69:根据时间演化算符的定义,所以,可是,再根据定义,所以,时间演化算符必须满足闭包性:为了方便起见,设定 t 0 = 0 {displaystyle t_{0}=0} ,初始时间 t 0 {displaystyle t_{0}} 永远是 0 {displaystyle 0} ,则可忽略时间演化算符的 t 0 {displaystyle t_{0}} 参数,改写为 U ( t ) {displaystyle U(t)} 。含时薛定谔方程为:68-73其中, H {displaystyle H} 是哈密顿量。从时间演化算符的定义式,可以得到由于 | ψ ( 0 ) ⟩ {displaystyle |psi (0)rangle } 可以是任意恒定态矢量(处于 t = 0 {displaystyle t=0} 的态矢量),时间演化算符必须遵守方程假若哈密顿量不含时,则这方程的解答为注意到在时间 t = 0 {displaystyle t=0} ,时间演化算符必须约化为单位算符 U ( 0 ) = I {displaystyle U(0)=I} 。由于 H {displaystyle H} 是算符,指数函数 e − i H t {displaystyle e^{-iHt}} 必须通过其泰勒级数计算:按照时间演化算符的定义,在时间 t {displaystyle t} ,态矢量为注意到 | ψ ( 0 ) ⟩ {displaystyle |psi (0)rangle } 可以是任意态矢量。假设初始态矢量 | ψ ( 0 ) ⟩ {displaystyle |psi (0)rangle } 是哈密顿量的本征态,而本征值是 E {displaystyle E} ,则在时间 t {displaystyle t} ,态矢量为这样,可以看到哈密顿量的本征态是定态,随着时间的流易,只有相位因子在进行演化。假设,哈密顿量与时间有关,但在不同时间的哈密顿量相互对易,则时间演化算符可以写为假设,哈密顿量与时间有关,而在不同时间的哈密顿量不相互对易,则时间演化算符可以写为其中, T {displaystyle T} 是时间排序算符。必须用戴森级数(英语:Dyson series)来表示,为了便利分析,位于下标的符号 H {displaystyle {mathcal {H}}} 、 I {displaystyle {mathcal {I}}} 、 S {displaystyle {mathcal {S}}} 分别标记海森堡绘景、相互作用绘景、薛定谔绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • 严重过敏反应过敏性休克(英语:Anaphylaxis)反应系指一种严重的全身性过敏反应,发病极快且具有致命性。通常会伴随以下症状:起痒疹、舌头或咽喉肿胀、呼吸困难、呕吐、头晕及低血压;以上症状往
  • 妻子妻,是男女婚姻中对女性配偶的称谓,与夫相对应。台湾话中将妻子雅称为牵手,清国初年台湾文献记载台湾原住民族、平埔人称妻为牵手,后受台湾不同族群广泛使用,向外人谦称自己配偶;而
  • 土壤气体土壤气体是土壤结构组成空间的间隔中所存在的气体。在一般土壤中,主要的气体包含了氮气、二氧化碳和氧气。当中的氧气至关重要,因为植物根系和土壤中微生物的呼吸都需要氧气。
  • 约翰·考克饶夫约翰·考克饶夫爵士,OM,KCB,CBE,FRS(英语:Sir John Douglas Cockcroft,1897年5月27日-1967年9月18日),英国物理学家,1951年诺贝尔物理学奖获得者。1961-1965年间,曾担任澳洲国立大学校监
  • 中华民国国家标准中华民国国家标准(英语:National Standards of the Republic of China,缩写CNS)是中华民国实施的国家标准,旧名中国国家标准(英语:Chinese National Standards,缩写CNS),1935年由经济
  • 德龙省德龙省(法语:Drôme,发音:)是法国奥弗涅-罗纳-阿尔卑斯大区所辖的省份。该省编号为26。5个海外省及大区
  • CeOsub2/sub二氧化铈(化学式:CeO2 ),是稀土元素铈最稳定的氧化物。它在常温下为淡黄色固体,加热时黄色加深。二氧化铈中铈是+4价,具有强氧化性,可以被过氧化氢(H2O2)还原。CeO2不溶于一般的酸
  • 隐性遗传隐性遗传(Recessive trait)是一种基因遗传中的情况,表现为在遗传过程中,某个基因的性状并不显现出来,而有可能“隐藏”于基因内,除非来自父母双方的基因都给子代遗传了此基因的
  • J06A·B·C·D·G·H·QI·J·L·M·N·P·R·S·VATC代码J06(免疫血清和免疫球蛋白)是解剖学治疗学及化学分类系统的一个药物分组,这是由世界卫生组织药物统计方法整合中心(The WH
  • 外海外海街道是中国广东省江门市江海区下辖的一个街道,总面积47平方公里,人口4.5万。下辖6社区12村外海话,是外海的方言,以前又称龙溪话。虽与江门话、新会话同属四邑方言,但外海话与