首页 >
薛定谔绘景
✍ dations ◷ 2025-01-23 09:15:01 #薛定谔绘景
薛定谔绘景(Schrödinger picture)是量子力学的一种表述,为纪念物理学者埃尔温·薛定谔而命名。在薛定谔绘景里,量子系统的态矢量随着时间流易而演化,而像位置、自旋一类的对应于可观察量的算符则与时间无关。薛定谔绘景与海森堡绘景、狄拉克绘景不同。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。在狄拉克绘景里,态矢量与算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从
t
0
{displaystyle t_{0}}
流易到
t
{displaystyle t}
,而经过这段时间间隔,态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
演化为态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
,这时间演化过程以方程表示为其中,
U
(
t
,
t
0
)
{displaystyle U(t,t_{0})}
是时间演化算符。假设系统的哈密顿量
H
{displaystyle H}
不含时,则时间演化算符为其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,指数函数
e
−
i
H
(
t
−
t
0
)
/
ℏ
{displaystyle e^{-iH(t-t_{0})/hbar }}
必须通过其泰勒级数计算。在初级量子力学教科书里,时常会使用薛定谔绘景。:第2章第25页时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
定义为其中,右矢
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
表示时间为
t
{displaystyle t}
的态矢量,
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
是时间演化算符,从时间
t
{displaystyle t}
演化到时间
t
0
{displaystyle t_{0}}
。这方程可以做这样解释:将时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
作用于时间是
t
0
{displaystyle t_{0}}
的态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
,则会得到时间是
t
{displaystyle t}
的态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
。类似地,也可以用左矢
⟨
ψ
|
{displaystyle langle psi |}
来定义:其中,算符
U
†
{displaystyle U^{dagger }}
是算符
U
{displaystyle U}
的厄米共轭。由于态矢量必须满足归一条件,态矢量的范数不能随时间而变::66-69可是,所以,其中,
I
{displaystyle I}
是单位算符。时间演化算符
U
(
t
0
,
t
0
)
{displaystyle U(t_{0},,t_{0})}
必须是单位算符
U
(
t
0
,
t
0
)
=
I
{displaystyle U(t_{0},,t_{0})=I}
,因为,:66-69从初始时间
t
0
{displaystyle t_{0}}
到最后时间
t
{displaystyle t}
的时间演化算符,可以视为从中途时间
t
1
{displaystyle t_{1}}
到最后时间
t
{displaystyle t}
的时间演化算符,乘以从初始时间
t
0
{displaystyle t_{0}}
到中途时间
t
1
{displaystyle t_{1}}
的时间演化算符:66-69:根据时间演化算符的定义,所以,可是,再根据定义,所以,时间演化算符必须满足闭包性:为了方便起见,设定
t
0
=
0
{displaystyle t_{0}=0}
,初始时间
t
0
{displaystyle t_{0}}
永远是
0
{displaystyle 0}
,则可忽略时间演化算符的
t
0
{displaystyle t_{0}}
参数,改写为
U
(
t
)
{displaystyle U(t)}
。含时薛定谔方程为:68-73其中,
H
{displaystyle H}
是哈密顿量。从时间演化算符的定义式,可以得到由于
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意恒定态矢量(处于
t
=
0
{displaystyle t=0}
的态矢量),时间演化算符必须遵守方程假若哈密顿量不含时,则这方程的解答为注意到在时间
t
=
0
{displaystyle t=0}
,时间演化算符必须约化为单位算符
U
(
0
)
=
I
{displaystyle U(0)=I}
。由于
H
{displaystyle H}
是算符,指数函数
e
−
i
H
t
{displaystyle e^{-iHt}}
必须通过其泰勒级数计算:按照时间演化算符的定义,在时间
t
{displaystyle t}
,态矢量为注意到
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意态矢量。假设初始态矢量
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
是哈密顿量的本征态,而本征值是
E
{displaystyle E}
,则在时间
t
{displaystyle t}
,态矢量为这样,可以看到哈密顿量的本征态是定态,随着时间的流易,只有相位因子在进行演化。假设,哈密顿量与时间有关,但在不同时间的哈密顿量相互对易,则时间演化算符可以写为假设,哈密顿量与时间有关,而在不同时间的哈密顿量不相互对易,则时间演化算符可以写为其中,
T
{displaystyle T}
是时间排序算符。必须用戴森级数(英语:Dyson series)来表示,为了便利分析,位于下标的符号
H
{displaystyle {mathcal {H}}}
、
I
{displaystyle {mathcal {I}}}
、
S
{displaystyle {mathcal {S}}}
分别标记海森堡绘景、相互作用绘景、薛定谔绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339
相关
- 哥伦布克里斯托弗·哥伦布(西班牙语:Cristóbal Colón;意大利语:Cristoforo Colombo),(1451年-1506年5月20日)探险家、殖民者、航海家,出生于中世纪的热那亚共和国(今意大利西北部)。在西班
- 流感甲型流行性感冒病毒属(Influenzavirus A) 乙型流行性感冒病毒属(Influenzavirus B) 丙型流行性感冒病毒属(Influenzavirus C)流行性感冒病毒,简称流感病毒,是一种造成人类及动
- 嗅神经嗅神经是第一对脑神经,编号Ⅰ。嗅神经由特殊内脏感觉纤维组成,由上鼻甲以上和鼻中隔以上部粘膜内的嗅细胞中枢突聚集而成,包括20多条嗅丝。嗅神经的主要功能是将气味的感觉传递
- 运动心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
- 建筑师建筑师,或称画则师、图则师、则师,是负责设计建筑物平面图的专业人士。建筑师通过与工程投资方和施工方的合作,在技术、经济、功能和造型上实现建筑物的营造。在逐步复杂的建筑
- 省水花园省水花园,是园林绿化和园艺,减少或省去了用水灌溉需求。省水花园可替代各类传统园艺不具备的方便,丰富,或可靠的淡水的需求。在一些地区,诸如节水型景观、耐旱园林、绿化。省水花
- 巴黎国际航空航天展巴黎勒布尔热国际航空暨航天展(法语:Salon International de l'Aéronautique et de l'Espace, Paris-Le Bourget,或也常根据其英文名The Paris Air Show而翻译为巴黎航空展)是
- 统计分类统计分类是机器学习非常重要的一个组成部分,它的目标是根据已知样本的某些特征,判断一个新的样本属于哪种已知的样本类。分类是监督学习的一个实例,根据已知训练集提供的样本,通
- 域名网域名称(英语:Domain Name,简称:Domain),简称域名、网域,是由一串用点分隔的字符组成的互联网上某一台计算机或计算机组的名称,用于在数据传输时标识计算机的电子方位。域名可以说
- 山地地区山是地面上被平地所围绕的具有较大的绝对高度和相对高度而凸起的地貌区。山离地面高度通常在海拔600米以上,包括低山、中山与高山,是否被称作山取决于当地人。 山一般是因板块