首页 >
薛定谔绘景
✍ dations ◷ 2025-04-25 20:24:30 #薛定谔绘景
薛定谔绘景(Schrödinger picture)是量子力学的一种表述,为纪念物理学者埃尔温·薛定谔而命名。在薛定谔绘景里,量子系统的态矢量随着时间流易而演化,而像位置、自旋一类的对应于可观察量的算符则与时间无关。薛定谔绘景与海森堡绘景、狄拉克绘景不同。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。在狄拉克绘景里,态矢量与算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从
t
0
{displaystyle t_{0}}
流易到
t
{displaystyle t}
,而经过这段时间间隔,态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
演化为态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
,这时间演化过程以方程表示为其中,
U
(
t
,
t
0
)
{displaystyle U(t,t_{0})}
是时间演化算符。假设系统的哈密顿量
H
{displaystyle H}
不含时,则时间演化算符为其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,指数函数
e
−
i
H
(
t
−
t
0
)
/
ℏ
{displaystyle e^{-iH(t-t_{0})/hbar }}
必须通过其泰勒级数计算。在初级量子力学教科书里,时常会使用薛定谔绘景。:第2章第25页时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
定义为其中,右矢
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
表示时间为
t
{displaystyle t}
的态矢量,
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
是时间演化算符,从时间
t
{displaystyle t}
演化到时间
t
0
{displaystyle t_{0}}
。这方程可以做这样解释:将时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
作用于时间是
t
0
{displaystyle t_{0}}
的态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
,则会得到时间是
t
{displaystyle t}
的态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
。类似地,也可以用左矢
⟨
ψ
|
{displaystyle langle psi |}
来定义:其中,算符
U
†
{displaystyle U^{dagger }}
是算符
U
{displaystyle U}
的厄米共轭。由于态矢量必须满足归一条件,态矢量的范数不能随时间而变::66-69可是,所以,其中,
I
{displaystyle I}
是单位算符。时间演化算符
U
(
t
0
,
t
0
)
{displaystyle U(t_{0},,t_{0})}
必须是单位算符
U
(
t
0
,
t
0
)
=
I
{displaystyle U(t_{0},,t_{0})=I}
,因为,:66-69从初始时间
t
0
{displaystyle t_{0}}
到最后时间
t
{displaystyle t}
的时间演化算符,可以视为从中途时间
t
1
{displaystyle t_{1}}
到最后时间
t
{displaystyle t}
的时间演化算符,乘以从初始时间
t
0
{displaystyle t_{0}}
到中途时间
t
1
{displaystyle t_{1}}
的时间演化算符:66-69:根据时间演化算符的定义,所以,可是,再根据定义,所以,时间演化算符必须满足闭包性:为了方便起见,设定
t
0
=
0
{displaystyle t_{0}=0}
,初始时间
t
0
{displaystyle t_{0}}
永远是
0
{displaystyle 0}
,则可忽略时间演化算符的
t
0
{displaystyle t_{0}}
参数,改写为
U
(
t
)
{displaystyle U(t)}
。含时薛定谔方程为:68-73其中,
H
{displaystyle H}
是哈密顿量。从时间演化算符的定义式,可以得到由于
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意恒定态矢量(处于
t
=
0
{displaystyle t=0}
的态矢量),时间演化算符必须遵守方程假若哈密顿量不含时,则这方程的解答为注意到在时间
t
=
0
{displaystyle t=0}
,时间演化算符必须约化为单位算符
U
(
0
)
=
I
{displaystyle U(0)=I}
。由于
H
{displaystyle H}
是算符,指数函数
e
−
i
H
t
{displaystyle e^{-iHt}}
必须通过其泰勒级数计算:按照时间演化算符的定义,在时间
t
{displaystyle t}
,态矢量为注意到
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意态矢量。假设初始态矢量
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
是哈密顿量的本征态,而本征值是
E
{displaystyle E}
,则在时间
t
{displaystyle t}
,态矢量为这样,可以看到哈密顿量的本征态是定态,随着时间的流易,只有相位因子在进行演化。假设,哈密顿量与时间有关,但在不同时间的哈密顿量相互对易,则时间演化算符可以写为假设,哈密顿量与时间有关,而在不同时间的哈密顿量不相互对易,则时间演化算符可以写为其中,
T
{displaystyle T}
是时间排序算符。必须用戴森级数(英语:Dyson series)来表示,为了便利分析,位于下标的符号
H
{displaystyle {mathcal {H}}}
、
I
{displaystyle {mathcal {I}}}
、
S
{displaystyle {mathcal {S}}}
分别标记海森堡绘景、相互作用绘景、薛定谔绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339
相关
- 人眼眼睛是一种人体器官,位于头部,左右成对。与其它哺乳动物的眼睛相同,人眼有多种用途。作为感觉器官,眼睛能对光起反应,传送讯号至大脑,以产生视觉。在眼睛后端的视网膜上,拥有杆细胞
- 联合国人权事务高级专员办事处联合国人权事务高级专员办事处(简称为“人权高专办”)(英语:Office of the United Nations High Commissioner for Human Rights,缩写为OHCHR)是联合国的下属机构之一,其目的和宗旨
- 贝叶斯数学模型贝叶斯推断(英语:Bayesian inference)是推论统计的一种方法。这种方法使用贝叶斯定理,在有更多证据及信息时,更新特定假设的概率。贝叶斯推断是统计学(特别是数理统计学)中很重要的
- 细菌性阴道病细菌性阴道炎(Bacterial vaginosis,简称BV),又称细菌性阴道病、非特异性阴道炎(Nonspecific vaginitis)是种发生在阴道内的疾病,其原因是细菌大量滋生而造成的。常见的症状包括有阴
- 植物学作者引证植物学作者引证是指第一次根据国际植物命名法规(ICBN).确定植物的拉丁种名的作者的名称缩写引证。缩写则依据ICBN推荐的46A, Note 1执行.作者缩写放到植物的拉丁名后面,不用
- 巴斯德效应1861年巴斯德发现,相比起足氧的情况,酵母在缺氧的情况下消耗更多的葡萄糖。这就是所谓的巴斯德效应。现在,人们将在厌氧型和需氧型能量代谢之间的转换过程总结为巴斯德效应。这
- 我们相信上帝“我们信仰上帝”(英语:In God We Trust)是美利坚合众国及其佛罗里达州的官方格言。这句格言首先出现于南北战争期间。因着基督教的影响,这一格言首次出现在美国于1864年发行的
- 氮端N端(亦作N-端,英语:N-terminus),又称氮端、氨基端,指多肽链具有游离的α氨基的末端。在转译过程中,多肽链是从N端往C端合成的,因而在书写表示多肽序列时,从N端开始书写,从左到右写到C
- 严陆光严陆光(1935年7月-),原籍浙江东阳,严济慈之子。电工学家,中科院院士,乌克兰国家科学院外籍院士,中科院电工所所长。70年代后期起,领导进行了超导磁体技术与应用的研究发展,进行了多方
- 二四第八第十埃及第二十四王朝是古埃及在前8世纪时期的一个短暂王朝,历时只有十余年,定都于尼罗河三角洲西部的塞易斯,统治尼罗河三角洲一带,最后被南方的第二十五王朝所灭。第二十