首页 >
薛定谔绘景
✍ dations ◷ 2025-05-16 04:04:20 #薛定谔绘景
薛定谔绘景(Schrödinger picture)是量子力学的一种表述,为纪念物理学者埃尔温·薛定谔而命名。在薛定谔绘景里,量子系统的态矢量随着时间流易而演化,而像位置、自旋一类的对应于可观察量的算符则与时间无关。薛定谔绘景与海森堡绘景、狄拉克绘景不同。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。在狄拉克绘景里,态矢量与算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从
t
0
{displaystyle t_{0}}
流易到
t
{displaystyle t}
,而经过这段时间间隔,态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
演化为态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
,这时间演化过程以方程表示为其中,
U
(
t
,
t
0
)
{displaystyle U(t,t_{0})}
是时间演化算符。假设系统的哈密顿量
H
{displaystyle H}
不含时,则时间演化算符为其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,指数函数
e
−
i
H
(
t
−
t
0
)
/
ℏ
{displaystyle e^{-iH(t-t_{0})/hbar }}
必须通过其泰勒级数计算。在初级量子力学教科书里,时常会使用薛定谔绘景。:第2章第25页时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
定义为其中,右矢
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
表示时间为
t
{displaystyle t}
的态矢量,
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
是时间演化算符,从时间
t
{displaystyle t}
演化到时间
t
0
{displaystyle t_{0}}
。这方程可以做这样解释:将时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
作用于时间是
t
0
{displaystyle t_{0}}
的态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
,则会得到时间是
t
{displaystyle t}
的态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
。类似地,也可以用左矢
⟨
ψ
|
{displaystyle langle psi |}
来定义:其中,算符
U
†
{displaystyle U^{dagger }}
是算符
U
{displaystyle U}
的厄米共轭。由于态矢量必须满足归一条件,态矢量的范数不能随时间而变::66-69可是,所以,其中,
I
{displaystyle I}
是单位算符。时间演化算符
U
(
t
0
,
t
0
)
{displaystyle U(t_{0},,t_{0})}
必须是单位算符
U
(
t
0
,
t
0
)
=
I
{displaystyle U(t_{0},,t_{0})=I}
,因为,:66-69从初始时间
t
0
{displaystyle t_{0}}
到最后时间
t
{displaystyle t}
的时间演化算符,可以视为从中途时间
t
1
{displaystyle t_{1}}
到最后时间
t
{displaystyle t}
的时间演化算符,乘以从初始时间
t
0
{displaystyle t_{0}}
到中途时间
t
1
{displaystyle t_{1}}
的时间演化算符:66-69:根据时间演化算符的定义,所以,可是,再根据定义,所以,时间演化算符必须满足闭包性:为了方便起见,设定
t
0
=
0
{displaystyle t_{0}=0}
,初始时间
t
0
{displaystyle t_{0}}
永远是
0
{displaystyle 0}
,则可忽略时间演化算符的
t
0
{displaystyle t_{0}}
参数,改写为
U
(
t
)
{displaystyle U(t)}
。含时薛定谔方程为:68-73其中,
H
{displaystyle H}
是哈密顿量。从时间演化算符的定义式,可以得到由于
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意恒定态矢量(处于
t
=
0
{displaystyle t=0}
的态矢量),时间演化算符必须遵守方程假若哈密顿量不含时,则这方程的解答为注意到在时间
t
=
0
{displaystyle t=0}
,时间演化算符必须约化为单位算符
U
(
0
)
=
I
{displaystyle U(0)=I}
。由于
H
{displaystyle H}
是算符,指数函数
e
−
i
H
t
{displaystyle e^{-iHt}}
必须通过其泰勒级数计算:按照时间演化算符的定义,在时间
t
{displaystyle t}
,态矢量为注意到
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意态矢量。假设初始态矢量
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
是哈密顿量的本征态,而本征值是
E
{displaystyle E}
,则在时间
t
{displaystyle t}
,态矢量为这样,可以看到哈密顿量的本征态是定态,随着时间的流易,只有相位因子在进行演化。假设,哈密顿量与时间有关,但在不同时间的哈密顿量相互对易,则时间演化算符可以写为假设,哈密顿量与时间有关,而在不同时间的哈密顿量不相互对易,则时间演化算符可以写为其中,
T
{displaystyle T}
是时间排序算符。必须用戴森级数(英语:Dyson series)来表示,为了便利分析,位于下标的符号
H
{displaystyle {mathcal {H}}}
、
I
{displaystyle {mathcal {I}}}
、
S
{displaystyle {mathcal {S}}}
分别标记海森堡绘景、相互作用绘景、薛定谔绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339
相关
- 表面活性剂表面活性剂(又称界面活性剂)是能使目标溶液表面张力显著下降的物质,可降低两种液体或液体-固体间的表面张力。最典型的例子是肥皂,具分解、渗入的效果,应用广泛。表面活性剂一般
- 黄长烨黄长烨(韩语:황장엽,1922年2月17日-2010年10月10日),祖籍咸镜南道,生于平安南道江东郡(现已并入平壤),是朝鲜民主主义人民共和国的思想家,以其对主体思想的理论化而著名。曾任朝鲜最高
- 瑞典语瑞典语( svenska 帮助·信息 .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium",
- 氧化还原氧化还原反应(英语:Reduction-oxidation reaction,简称Redox)是在反应前后元素的氧化数具有相应的升降变化的化学反应。这种反应可以理解成由两个半反应构成,即氧化反应和还原反
- 本华·曼德博本华·曼德博(法语:Benoît B. Mandelbrot,1924年11月20日-2010年10月14日)又译伯努瓦·曼德勃罗、曼德布洛特,生于波兰华沙,法国、美国数学家。幼年随全家移居法国巴黎,大半生均在
- 血小板 (工作细胞)血小板(日文:.mw-parser-output ruby>rt,.mw-parser-output ruby>rtc{font-feature-settings:"ruby"1}.mw-parser-output ruby.large{font-size:250%}.mw-parser-output ruby.
- 利贝昆氏腺利贝昆氏腺是位于十二指肠壁和空肠壁的一种外分泌腺,在不同的位置,其功能不尽相同。
- 冻疮冻疮是身体表面受到低温伤害后局部血液循环发生障碍而产生的病变。一般由于天气寒冷引起的局限性炎症损害,为冬天的常见疾病,不具传染性。通常出现在肢体的末梢和暴露的部位,如
- 脑苷脂脑苷脂(英语:Cerebroside)是最早被发现的鞘糖脂,因发现于人脑而得名。由神经酰胺的1号位羟基被糖基化而得。其中的糖基可以是葡糖或半乳糖,它因此又分为葡糖脑苷脂与半乳糖脑苷脂
- 拍号在乐谱中,表示拍子的记号,叫做拍号。分子表示每小节中单位拍的数目,分母表示单位拍的音符时值。拍号以分数的形式写出(但正统五线谱书写是不写中间的分线,数字简谱则有时例外),分数