薛定谔绘景

✍ dations ◷ 2025-10-13 22:43:10 #薛定谔绘景
薛定谔绘景(Schrödinger picture)是量子力学的一种表述,为纪念物理学者埃尔温·薛定谔而命名。在薛定谔绘景里,量子系统的态矢量随着时间流易而演化,而像位置、自旋一类的对应于可观察量的算符则与时间无关。薛定谔绘景与海森堡绘景、狄拉克绘景不同。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。在狄拉克绘景里,态矢量与算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从 t 0 {displaystyle t_{0}} 流易到 t {displaystyle t} ,而经过这段时间间隔,态矢量 | ψ ( t 0 ) ⟩ {displaystyle |psi (t_{0})rangle } 演化为态矢量 | ψ ( t ) ⟩ {displaystyle |psi (t)rangle } ,这时间演化过程以方程表示为其中, U ( t , t 0 ) {displaystyle U(t,t_{0})} 是时间演化算符。假设系统的哈密顿量 H {displaystyle H} 不含时,则时间演化算符为其中, ℏ {displaystyle hbar } 是约化普朗克常数,指数函数 e − i H ( t − t 0 ) / ℏ {displaystyle e^{-iH(t-t_{0})/hbar }} 必须通过其泰勒级数计算。在初级量子力学教科书里,时常会使用薛定谔绘景。:第2章第25页时间演化算符 U ( t , t 0 ) {displaystyle U(t,,t_{0})} 定义为其中,右矢 | ψ ( t ) ⟩ {displaystyle |psi (t)rangle } 表示时间为 t {displaystyle t} 的态矢量, U ( t , t 0 ) {displaystyle U(t,,t_{0})} 是时间演化算符,从时间 t {displaystyle t} 演化到时间 t 0 {displaystyle t_{0}} 。这方程可以做这样解释:将时间演化算符 U ( t , t 0 ) {displaystyle U(t,,t_{0})} 作用于时间是 t 0 {displaystyle t_{0}} 的态矢量 | ψ ( t 0 ) ⟩ {displaystyle |psi (t_{0})rangle } ,则会得到时间是 t {displaystyle t} 的态矢量 | ψ ( t ) ⟩ {displaystyle |psi (t)rangle } 。类似地,也可以用左矢 ⟨ ψ | {displaystyle langle psi |} 来定义:其中,算符 U † {displaystyle U^{dagger }} 是算符 U {displaystyle U} 的厄米共轭。由于态矢量必须满足归一条件,态矢量的范数不能随时间而变::66-69可是,所以,其中, I {displaystyle I} 是单位算符。时间演化算符 U ( t 0 , t 0 ) {displaystyle U(t_{0},,t_{0})} 必须是单位算符 U ( t 0 , t 0 ) = I {displaystyle U(t_{0},,t_{0})=I} ,因为,:66-69从初始时间 t 0 {displaystyle t_{0}} 到最后时间 t {displaystyle t} 的时间演化算符,可以视为从中途时间 t 1 {displaystyle t_{1}} 到最后时间 t {displaystyle t} 的时间演化算符,乘以从初始时间 t 0 {displaystyle t_{0}} 到中途时间 t 1 {displaystyle t_{1}} 的时间演化算符:66-69:根据时间演化算符的定义,所以,可是,再根据定义,所以,时间演化算符必须满足闭包性:为了方便起见,设定 t 0 = 0 {displaystyle t_{0}=0} ,初始时间 t 0 {displaystyle t_{0}} 永远是 0 {displaystyle 0} ,则可忽略时间演化算符的 t 0 {displaystyle t_{0}} 参数,改写为 U ( t ) {displaystyle U(t)} 。含时薛定谔方程为:68-73其中, H {displaystyle H} 是哈密顿量。从时间演化算符的定义式,可以得到由于 | ψ ( 0 ) ⟩ {displaystyle |psi (0)rangle } 可以是任意恒定态矢量(处于 t = 0 {displaystyle t=0} 的态矢量),时间演化算符必须遵守方程假若哈密顿量不含时,则这方程的解答为注意到在时间 t = 0 {displaystyle t=0} ,时间演化算符必须约化为单位算符 U ( 0 ) = I {displaystyle U(0)=I} 。由于 H {displaystyle H} 是算符,指数函数 e − i H t {displaystyle e^{-iHt}} 必须通过其泰勒级数计算:按照时间演化算符的定义,在时间 t {displaystyle t} ,态矢量为注意到 | ψ ( 0 ) ⟩ {displaystyle |psi (0)rangle } 可以是任意态矢量。假设初始态矢量 | ψ ( 0 ) ⟩ {displaystyle |psi (0)rangle } 是哈密顿量的本征态,而本征值是 E {displaystyle E} ,则在时间 t {displaystyle t} ,态矢量为这样,可以看到哈密顿量的本征态是定态,随着时间的流易,只有相位因子在进行演化。假设,哈密顿量与时间有关,但在不同时间的哈密顿量相互对易,则时间演化算符可以写为假设,哈密顿量与时间有关,而在不同时间的哈密顿量不相互对易,则时间演化算符可以写为其中, T {displaystyle T} 是时间排序算符。必须用戴森级数(英语:Dyson series)来表示,为了便利分析,位于下标的符号 H {displaystyle {mathcal {H}}} 、 I {displaystyle {mathcal {I}}} 、 S {displaystyle {mathcal {S}}} 分别标记海森堡绘景、相互作用绘景、薛定谔绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339

相关

  • ScD自然科学博士(Doctor of Science、Sc.D., D.Sc., S.D.、Dr.Sc)是一种学位及荣誉学位,一般是指在大学自然科学相关科系的研究所博士班毕业后可获得之学位,但亦有纯粹因自然科学上
  • Tm4f13 6s22, 8, 18, 31, 8, 2蒸气压第一:596.7 kJ·mol−1 第二:1160 kJ·mol−1 第三:2285 kJ·mol主条目:铥的同位素铥是一种化学元素,符号Tm,原子序数69,是一种金属。铥是第二稀
  • 马雅语系玛雅语系(或玛雅语族)是一支使用于墨西哥东南一直到中美洲北部的语族,最远到达洪都拉斯,最早可追溯到五百年前前哥伦布时期的中部美洲(包括中美洲与墨西哥),虽然现今这些地区的官方
  • 神经生物学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学神经科学(英语:neuroscience),又称神经生
  • 小儿医学小儿科(或称儿科)是现代医学的一个分支,专门医疗患病的婴儿、儿童及青少年。最大的年龄通常至青春期。一个受到这方面知识专门训练的医生被称作儿科医生。
  • 亚洲太空竞赛亚洲太空竞赛系指数个亚洲国家设有航天机构,并于太空相关科学、科技任务相互竞争,媒体则将之与过去美国及苏联间的太空竞赛相类比。如同过去的太空竞赛,各国将国家安全扩展至太
  • 袋食蚁兽袋食蚁兽(学名:Myrmecobius fasciatus)是生存于西澳洲的食虫性有袋动物,近年再引入至南澳大利亚州。袋食蚁兽曾经遍布整个澳洲南方,但现在仅在少数地区存活,属于濒危物种。袋食蚁
  • 轶事证据轶事证据(Anecdotal evidence)或传闻证据系指来自传闻、故事的证据。有些传闻往往细节详细、诩诩如生,让人印象深刻;有些案例则以新闻、八卦的形式被人一传再传,造成三人成虎,让人
  • 托勒密六世托勒密六世(笃爱母亲者)Πτολεμαίος ο Φιλομήτωρ(约前186年—前145年),古埃及托勒密王朝国王(前181年—前145年在位)。托勒密五世之子。在他统治期间,埃及继续与
  • span style=color:#0055AA;大气/span地球大气层,又称大气圈,因重力关系而围绕着地球的一层混合气体,是地球最外部的气体圈层,包围着海洋和陆地,大气圈没有确切的上界,在离地表2000-16000公里高空仍有稀薄的气体和基本