首页 >
薛定谔绘景
✍ dations ◷ 2025-07-21 11:51:18 #薛定谔绘景
薛定谔绘景(Schrödinger picture)是量子力学的一种表述,为纪念物理学者埃尔温·薛定谔而命名。在薛定谔绘景里,量子系统的态矢量随着时间流易而演化,而像位置、自旋一类的对应于可观察量的算符则与时间无关。薛定谔绘景与海森堡绘景、狄拉克绘景不同。在海森堡绘景里,对应于可观察量的算符会随着时间流易而演化,而描述量子系统的态矢量则与时间无关。在狄拉克绘景里,态矢量与算符都会随着时间流易而演化。这三种绘景殊途同归,所获得的结果完全一致。这是必然的,因为它们都是在表达同样的物理现象。:80-84在薛定谔绘景里,负责时间演化的算符是一种幺正算符,称为时间演化算符。假设时间从
t
0
{displaystyle t_{0}}
流易到
t
{displaystyle t}
,而经过这段时间间隔,态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
演化为态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
,这时间演化过程以方程表示为其中,
U
(
t
,
t
0
)
{displaystyle U(t,t_{0})}
是时间演化算符。假设系统的哈密顿量
H
{displaystyle H}
不含时,则时间演化算符为其中,
ℏ
{displaystyle hbar }
是约化普朗克常数,指数函数
e
−
i
H
(
t
−
t
0
)
/
ℏ
{displaystyle e^{-iH(t-t_{0})/hbar }}
必须通过其泰勒级数计算。在初级量子力学教科书里,时常会使用薛定谔绘景。:第2章第25页时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
定义为其中,右矢
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
表示时间为
t
{displaystyle t}
的态矢量,
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
是时间演化算符,从时间
t
{displaystyle t}
演化到时间
t
0
{displaystyle t_{0}}
。这方程可以做这样解释:将时间演化算符
U
(
t
,
t
0
)
{displaystyle U(t,,t_{0})}
作用于时间是
t
0
{displaystyle t_{0}}
的态矢量
|
ψ
(
t
0
)
⟩
{displaystyle |psi (t_{0})rangle }
,则会得到时间是
t
{displaystyle t}
的态矢量
|
ψ
(
t
)
⟩
{displaystyle |psi (t)rangle }
。类似地,也可以用左矢
⟨
ψ
|
{displaystyle langle psi |}
来定义:其中,算符
U
†
{displaystyle U^{dagger }}
是算符
U
{displaystyle U}
的厄米共轭。由于态矢量必须满足归一条件,态矢量的范数不能随时间而变::66-69可是,所以,其中,
I
{displaystyle I}
是单位算符。时间演化算符
U
(
t
0
,
t
0
)
{displaystyle U(t_{0},,t_{0})}
必须是单位算符
U
(
t
0
,
t
0
)
=
I
{displaystyle U(t_{0},,t_{0})=I}
,因为,:66-69从初始时间
t
0
{displaystyle t_{0}}
到最后时间
t
{displaystyle t}
的时间演化算符,可以视为从中途时间
t
1
{displaystyle t_{1}}
到最后时间
t
{displaystyle t}
的时间演化算符,乘以从初始时间
t
0
{displaystyle t_{0}}
到中途时间
t
1
{displaystyle t_{1}}
的时间演化算符:66-69:根据时间演化算符的定义,所以,可是,再根据定义,所以,时间演化算符必须满足闭包性:为了方便起见,设定
t
0
=
0
{displaystyle t_{0}=0}
,初始时间
t
0
{displaystyle t_{0}}
永远是
0
{displaystyle 0}
,则可忽略时间演化算符的
t
0
{displaystyle t_{0}}
参数,改写为
U
(
t
)
{displaystyle U(t)}
。含时薛定谔方程为:68-73其中,
H
{displaystyle H}
是哈密顿量。从时间演化算符的定义式,可以得到由于
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意恒定态矢量(处于
t
=
0
{displaystyle t=0}
的态矢量),时间演化算符必须遵守方程假若哈密顿量不含时,则这方程的解答为注意到在时间
t
=
0
{displaystyle t=0}
,时间演化算符必须约化为单位算符
U
(
0
)
=
I
{displaystyle U(0)=I}
。由于
H
{displaystyle H}
是算符,指数函数
e
−
i
H
t
{displaystyle e^{-iHt}}
必须通过其泰勒级数计算:按照时间演化算符的定义,在时间
t
{displaystyle t}
,态矢量为注意到
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
可以是任意态矢量。假设初始态矢量
|
ψ
(
0
)
⟩
{displaystyle |psi (0)rangle }
是哈密顿量的本征态,而本征值是
E
{displaystyle E}
,则在时间
t
{displaystyle t}
,态矢量为这样,可以看到哈密顿量的本征态是定态,随着时间的流易,只有相位因子在进行演化。假设,哈密顿量与时间有关,但在不同时间的哈密顿量相互对易,则时间演化算符可以写为假设,哈密顿量与时间有关,而在不同时间的哈密顿量不相互对易,则时间演化算符可以写为其中,
T
{displaystyle T}
是时间排序算符。必须用戴森级数(英语:Dyson series)来表示,为了便利分析,位于下标的符号
H
{displaystyle {mathcal {H}}}
、
I
{displaystyle {mathcal {I}}}
、
S
{displaystyle {mathcal {S}}}
分别标记海森堡绘景、相互作用绘景、薛定谔绘景。各种绘景随着时间流易会呈现出不同的演化::86-89, 337-339
相关
- 头孢唑肟头孢唑肟(英文名Ceftizoxime)也称为“安保速灵”“安普西林”“头孢去甲噻肟”“去甲噻肟头孢菌素”或“去甲酰氧甲基唑肟头孢菌素”,是一种不经肠的第三代头孢菌素,常以头孢唑
- 阴道环阴道环(英语:Vaginal rings)是可挠聚合物材质的给药装置(英语:drug delivery),可置入阴道中,持续阴道内给药一段时间。有些阴道环也可以提供避孕效果(阴道避孕环)。阴道环不会因使用的
- 埃及第十九王朝第八第十埃及第十九王朝:公元前1293年-公元前1185年(大约持续了108年)埃及第十九王朝是古埃及历史上的一个王朝,其与第十八王朝和第二十王朝统称新王国时期,第十九王朝是新王国时
- 花萼花萼是一朵花中所有萼片的总称,位于花的最外层,一般是绿色,样子类似小叶,但也有少数花的花萼样子类似花瓣,有颜色。花萼在花还是芽时包围着花,有保护花瓣作用,花开放后花萼托在最外
- 行行部,为汉字索引中的部首之一,康熙字典214个部首中的第一百四十四个(六划的则为第二十七个)。就繁体和简体中文中,行部归于六划部首。行部只将字左右夹在一起为部字。且无其他部
- 粘土黏土,俗作粘土(均读作niántǔ),是有黏性的泥土,一般指颗粒小于2微米且可塑的多种含水硅酸铝盐矿物混合体(英语:Hybrid)。除了铝外,黏土还包含少量镁、铁、钠、钾和钙等元素。黏土一
- 中国高等教育语言 - 文化 - 体育 - 节日 政府 - 政治 - 法律 - 经济 艺术 - 文学 - 舞蹈 - 戏曲中华人民共和国高等教育包括普通高等教育、成人高等教育和高等教育自学考试,属于中华
- 限速酶限速酶(英语:rate-limiting enzyme)属于代谢过程。不单独指一种酶,有相对性。指在生物化学反应通路中催化反应速率最慢的酶,是限制总反应速度的酶,同时也决定了总反应速率。限速酶
- 荷尔蒙疗法荷尔蒙疗法(英语:Hormone therapy)是任何形式的激素疗法,其中患者在治疗过程中接受激素,以补充缺乏天然存在的激素,或用其他激素代替天然存在的激素。用激素拮抗剂治疗也可称为抗
- 温尼伯温尼伯(英语:Winnipeg;i/ˈwɪnɪpɛɡ/),加拿大当地粤语人士称之为温尼辟,座落于草原三省东缘,是加拿大第八大城市,也是马尼托巴省省会和该省最大城市,半数以上的马尼托巴省人口集中