牛顿 · 莱布尼兹 · 柯西 · 魏尔斯特拉斯 · 黎曼 · 拉格朗日 · 欧拉 · 帕斯卡 · 海涅(英语:Eduard Heine) · 巴罗 · 波尔查诺 · 狄利克雷 · 格林 · 斯托克斯 · 若尔当 · 达布 · 傅里叶 · 拉普拉斯 · 雅各布·伯努利 · 约翰·伯努利 · 阿达马 · 麦克劳林 · 迪尼 · 沃利斯 · 费马 · 达朗贝尔 · 黑维塞 · 吉布斯 · 奥斯特罗格拉德斯基 · 刘维尔 · 棣莫弗 · 格雷果里 · 玛达瓦(英语:Madhava of Sangamagrama) · 婆什迦罗第二 · 阿涅西 · 阿基米德
从无穷小量分析来理解曲线(英语:Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes) · 分析学教程(英语:Cours d'Analyse) · 无穷小分析引论 · 用无穷级数做数学分析(英语:De analysi per aequationes numero terminorum infinitas) · 流形上的微积分(英语:Calculus on Manifolds (book)) · 微积分学教程 · 纯数学教程(英语:A Course of Pure Mathematics) · 机械原理方法论(英语:The Method of Mechanical Theorems)
线性微分方程是数学中常见的一类微分方程。指以下形式的微分方程:
其中方程左侧的微分算子 ,便得到了一个次方程:
这个方程() = 0称为特征方程。
一般地,把微分方程中以下的项
换成,便可得到特征方程。这个方程有个解:1, ..., 。把任何一个解代入 ,便可以得到微分方程的一个解: 。由于齐次线性微分方程满足叠加原理,因此这些函数的任意线性组合仍然满足微分方程。
如果特征方程的根都不重复,我们便得到了微分方程的个解。可以证明,这些解是线性独立的。于是,微分方程的通解就是 = 1 + 2 + …… + n ,其中1、2、……、n是常数。
以上讨论了个根全不相同的情形。如果这个根中有两个(或多个)相同,用上面的方法就无法得出个线性独立的解。但是,可以验证,如果是特征方程的 重根,那么,对于 ,都能得到 个解,所有这些解的线性组合就是方程的通解。
一般地,如果微分方程的系数都是实数,那么它的解也应该表示成实数的形式。假如特征方程有复数根,那么它一定是成对的,也就是说,如果 + 是特征方程的根,那么 - 也是一个根。于是, = ( + )和 = ( - )都是微分方程的解。但这两个解都是复数的形式。考虑到这两个解的任意线性组合也仍然是微分方程的解,我们可以把这两个解相加,再除以2,利用欧拉公式,便得到一个实数形式的解: = cos。如果把两个解相减,再除以2i,便得到另一个实数形式的解: = sin。于是, = 1 cos + 2 sin就是微分方程的通解。
求微分方程和2−。于是,:
因此,原微分方程的解是:
假设有以下的微分方程:
我们首先求出对应的齐次方程的通解1、2是常数,1、2是的函数。然后我们用常数变易法求出非齐次方程的一个特解,方法是把齐次方程的通解中的常数1、2换成的未知函数1、2,也就是:
两边求导数,可得:
我们把函数1、2加上一条限制:
于是:
两边再求导数,可得:
把(1)、(3)、(4)代入原微分方程中,可得:
整理,得:
由于1和2都是齐次方程的通解,因此阶的变系数微分方程具有以下形式:
一个例子是柯西-欧拉方程:
变系数线性微分方程通常没有一般的方法可以求解,但一阶的变系数线性微分方程是例外。设有以下的一阶变系数线性微分方程:
这个方程可以用积分因子求解,方法是把两边乘以() = b,() = 1,因此微分方程的解为:
应用拉普拉斯变换解线性微分方程显得更为方便简单。
首先有以下关系:
有如下微分方程:
该方程可变换为:
则:
() 通过拉普拉斯反变换
求得。