线性微分方程

✍ dations ◷ 2025-09-12 23:29:12 #微分方程

牛顿 · 莱布尼兹 · 柯西 · 魏尔斯特拉斯  · 黎曼 · 拉格朗日 · 欧拉 · 帕斯卡 · 海涅(英语:Eduard Heine) · 巴罗 · 波尔查诺 · 狄利克雷 · 格林 · 斯托克斯 · 若尔当 · 达布 · 傅里叶 · 拉普拉斯 · 雅各布·伯努利 · 约翰·伯努利 · 阿达马 · 麦克劳林 · 迪尼 · 沃利斯 · 费马 · 达朗贝尔 · 黑维塞 · 吉布斯 · 奥斯特罗格拉德斯基 · 刘维尔 · 棣莫弗 · 格雷果里 · 玛达瓦(英语:Madhava of Sangamagrama) · 婆什迦罗第二 · 阿涅西 · 阿基米德

从无穷小量分析来理解曲线(英语:Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes) · 分析学教程(英语:Cours d'Analyse) · 无穷小分析引论 · 用无穷级数做数学分析(英语:De analysi per aequationes numero terminorum infinitas) · 流形上的微积分(英语:Calculus on Manifolds (book)) · 微积分学教程 · 纯数学教程(英语:A Course of Pure Mathematics) · 机械原理方法论(英语:The Method of Mechanical Theorems)

线性微分方程是数学中常见的一类微分方程。指以下形式的微分方程:

其中方程左侧的微分算子 L {\displaystyle {\mathcal {L}}}  ,便得到了一个次方程:

这个方程() = 0称为特征方程。

一般地,把微分方程中以下的项

换成,便可得到特征方程。这个方程有个解:1, ..., 。把任何一个解代入 ,便可以得到微分方程的一个解: 。由于齐次线性微分方程满足叠加原理,因此这些函数的任意线性组合仍然满足微分方程。

如果特征方程的根都不重复,我们便得到了微分方程的个解。可以证明,这些解是线性独立的。于是,微分方程的通解就是 = 1  + 2  + …… + n ,其中12、……、n是常数。

以上讨论了个根全不相同的情形。如果这个根中有两个(或多个)相同,用上面的方法就无法得出个线性独立的解。但是,可以验证,如果是特征方程的 重根,那么,对于 k { 0 , 1 , , m z 1 } {\displaystyle k\in \{0,1,\dots ,m_{z}-1\}\,} ,都能得到 个解,所有这些解的线性组合就是方程的通解。

一般地,如果微分方程的系数都是实数,那么它的解也应该表示成实数的形式。假如特征方程有复数根,那么它一定是成对的,也就是说,如果 + 是特征方程的根,那么 - 也是一个根。于是, =  ( + )和 =  ( - )都是微分方程的解。但这两个解都是复数的形式。考虑到这两个解的任意线性组合也仍然是微分方程的解,我们可以把这两个解相加,再除以2,利用欧拉公式,便得到一个实数形式的解: =  cos。如果把两个解相减,再除以2i,便得到另一个实数形式的解: =  sin。于是, = 1 cos + 2 sin就是微分方程的通解。

求微分方程 y 4 y + 5 y = 0 {\displaystyle y''-4y'+5y=0\,} 和2−。于是, y = C 1 e 2 x cos x + C 2 e 2 x sin x {\displaystyle y=C_{1}e^{2x}\cos {x}+C_{2}e^{2x}\sin {x}}

因此,原微分方程的解是:

假设有以下的微分方程:

我们首先求出对应的齐次方程的通解   y = C 1 y 1 + C 2 y 2 {\displaystyle \ y=C_{1}y_{1}+C_{2}y_{2}} 12是常数,12是的函数。然后我们用常数变易法求出非齐次方程的一个特解,方法是把齐次方程的通解中的常数12换成的未知函数12,也就是:

两边求导数,可得:

我们把函数12加上一条限制:

于是:

两边再求导数,可得:

把(1)、(3)、(4)代入原微分方程中,可得:

整理,得:

由于12都是齐次方程的通解,因此 u 1 y 1 + p u 1 y 1 + q u 1 y 1 {\displaystyle u_{1}y_{1}''+pu_{1}y_{1}'+qu_{1}y_{1}} 阶的变系数微分方程具有以下形式:

一个例子是柯西-欧拉方程:

变系数线性微分方程通常没有一般的方法可以求解,但一阶的变系数线性微分方程是例外。设有以下的一阶变系数线性微分方程:

这个方程可以用积分因子求解,方法是把两边乘以 e f ( x ) d x {\displaystyle e^{\int f(x)\,dx}} () = b,() = 1,因此微分方程的解为:

应用拉普拉斯变换解线性微分方程显得更为方便简单。

首先有以下关系:

有如下微分方程:

该方程可变换为:

则:

L { f ( t ) } = L { ϕ ( t ) } + i = 1 n a i j = 1 i s i j f ( j 1 ) ( 0 ) i = 0 n a i s i . {\displaystyle {\mathcal {L}}\{f(t)\}={{\mathcal {L}}\{\phi (t)\}+\sum _{i=1}^{n}a_{i}\sum _{j=1}^{i}s^{i-j}f^{(j-1)}(0) \over \sum _{i=0}^{n}a_{i}s^{i}}.} () 通过拉普拉斯反变换 L { f ( t ) } {\displaystyle {\mathcal {L}}\{f(t)\}} 求得。


相关

  • 葡萄糖葡萄糖(法语、德语、英语:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一种单糖。 因为拥有6个碳原子,被归为己糖或六碳糖。葡萄糖是一种多羟基醛,分子
  • 模除(又称模数、取模操作、取模运算等,英语:modulo 有时也称作 modulus)得到的是一个数除以另一个数的余数。给定两个正整数:被除数 a 和除数 n,a modulo n (缩写为 a mod n)得到
  • 赫尔德瓦尔赫尔德瓦尔(Haridwar;又译作哈立德瓦尔)是印度北阿坎德邦一个重要的朝圣城市,恒河在从源头甘戈特里冰川流出253公里后,在此进入恒河平原。赫尔德瓦尔被视为印度教七个最神圣的地
  • 舞蹈链在计算机科学中, 舞蹈链(Dancing Links), 也叫 DLX, 是由 Donald Knuth 提出的数据结构,目的是快速实现他提出的的 X算法. X算法是一种递归算法,时间复杂度不确定, 深度优先,
  • 大白菇蕈伞凸面大白菇(学名:),俗称乳白脆褶(milk-white brittlegill),是一种担子菌门真菌,隶属于俗称脆褶()的红菇属。这种真菌呈白色,菌盖有着棕色的斑纹,且菌柄短小稳健。这种真菌可供食用,但
  • 蓝斑条尾蓝斑条尾�,又称蓝点�(学名:),为软骨鱼纲鳐目�科的其中一种。本鱼分布于印度西太平洋区,包括红海、东非、马尔代夫、伊朗、巴基斯坦、斯里兰卡、日本、台湾、韩国、中国、越南、柬埔寨
  • 空气标准空气标准分析是指在分析内燃机的热功循环过程中,以空气代替实际内部的工质进行分析,并进行其他简化的分析方式。内燃机以其内部的气体作为工作流体,在真实环境下,内部的工作流体
  • 王清穆王清穆(1860年-1941年),字希林,号丹揆、农隐老人,江苏崇明(今上海市崇明县)人。清朝官员,实业家。光绪十六年(1890年)庚寅科进士,同年五月,著主事,分部学习。任职户部,光绪二十九年(1903年)任
  • 董杰董杰(?-1511年),字万英,直隶宁国府泾县人,军籍,明朝政治人物。应天府乡试第三名举人。成化二十三年(1487年)中式丁未科二甲第四十五名进士。曾经上言抗疏汤鼐。授湖广沔阳州知州。几月
  • Corrado GalzioCorrado Galzio(意大利语:korrado galtsdjo,1919年11月3日-2020年4月19日)出生于意大利锡拉库萨省诺托市,是著名的音乐家和钢琴演奏家,他创立了诺托国际音乐节,并在加拉加斯创建了意