轨道对称

✍ dations ◷ 2025-12-11 16:50:29 #轨道对称
分子对称性描述分子的对称性表现并根据分子的对称性对分子作分类。分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和它的光谱学数据(以拉波特规则之类的选择定则为基础)。在大学程度的物理化学、量子化学与无机化学教科书中,都有关于对称性的章节。在各种不同的分子对称性研究架构中,群论是一项主流。这个架构在分子轨域的对称性研究中也很有用,例如应用Hückel分子轨道法、配位场理论和Woodward-Hoffmann规则等。另一个规模较大的架构,是利用晶体系统来描述材料的晶体对称性。实际测定分子的对称性有许多技术,包括X射线晶体学和各种形式的光谱。光谱学符号是以各种对称条件为基础。分子对称性的研究是取自于数学上的群论。分子对称性可分成5种对称元素。这5种对称元素都有其对称操作。对称操作为了与对称元素作区别,通常但不绝对的,会加上脱字符号。所以Ĉn是一个分子绕轴旋转,而Ê为其恒等元素操作。一个对称元素可以有一个以上与它相关的对称操作。因为 C1 与 E、S1 与 σ 、 S2 与 i相等,所有的对称操作都可以分成真转动或非真转动(proper or improper rotations)。点群是一组对称操作 (symmetry operation),符合数论中群的定义,在群中的所有操作中至少有一个点固定不变。三维空间中有32组这样的点群(英语:point groups in three dimensions),其中的30组与化学相关。 它们以向夫立符号为分类基础。一个对称操作的集合组成一个群,with operator the application of the operations itself,当:群的阶为该群中对称操作的数目。例如,水分子的点群是 C2v,对称操作是 E, C2, σv 和 σv'。它的顺序为 4。每一个操作都是它本身的相反。 以一个例子做结,在一个σv反射后做再一个 C2旋转会是一个σv' 对称操作 (注意:"在 B后做 A操作形成 C 记作 BA = C"):σv*C2 = σv'下表为典型分子的点群列表。对称操作可用许多方式表示。一个方便的表征是使用矩阵。在直角坐标系中,任一个向量代表一个点,将其以对称操作转换左乘(left-multiplying)得出新的点。结合操作则为矩阵的乘法: C2v 的例子如下:像这样的表示虽然存在无限多个,但是群的不可约表示(或irreps)被普遍使用,因为所有其他的群的表示可以被描述为一个不可约表示的线性组合。对每个点群而言,一个特征表汇整了它的对称操作和它的不可约表示(irreducible representations)的资料。因为它总是与不可约表示的数量和对称操作的分类相等,所以表格都是正方形。表格本身包含了当使用一个特定的对称操作时,特定的不可约表示如何转换的特征。在一个分子点群中的任一作用于分子本身的对称操作,将不会改变分子点群。但作用于一般实体,例如一个向量或一个轨域,这方面的需求并非如此。矢量可以改变符号或方向,轨域可以改变类型。对于简单的点群,值不是 1 就是 −1:1表示符号或相位(矢量或轨域)在对称操作的作用下是不变的(对称),而 −1表示符号变成(不对称)根据下列的规定标示表征:表中还记录如下的资料:笛卡尔矢量及其如何旋转,和它的二次方程的如何用群的对称操作来转换,特别是以相同方法转换不可约表示。这些资料一般显示在表格的右边。这些资料是有用的,因为分子中的化学重要轨道(特别是 p 和 d 轨道)具有相同的对称性。下表为C2v对称点群特征表:承接C2v的例子,考虑水分子中氧原子的轨域:2px垂直于分子平面,且以一个 C2 与一个 σv'(yz) 操作改变符号,但与其他两个操作仍保持不变(显而易见的,恒等操作的特征恒为+1)。因此这个轨域的特征集合为( 1, −1, 1, −1),与B1不可约表示相符合。同样地,2pz轨域被认为有A1不可约表示的对称性, 2py B2,和 3dxy轨域 A2。这些分配和其他的都在表格最右边的两个字段中注明。1929年时,汉斯·贝特在他的配位场理论研究中使用点群操作来作描述,尤金·维格纳则使用群论解释分子振动。拉斯洛·蒂萨(英语:László Tisza)(1933)整理出第一个特征表,之后再加入振动光谱。罗伯特·S·马利肯为第一个将特征表以英文发表的人(1933),埃德加·布莱特·威尔逊(英语:Edgar Bright Wilson)在1934年用它来预测振动的简正波的对称性。 Rosenthal与Murphy在1936年发表32点群的完整集合。

相关

  • 中法兰克王国中法兰克王国(拉丁语:Francia media)为欧洲中世纪的一个国家。814年,查理曼去世,法兰克帝国随之分裂。843年,查理曼的三个孙子订立《凡尔登条约》,遵照查理在806年就已经规定了他死
  • AlexaAlexa Internet公司是亚马逊公司的一家子公司,总部位于加利福尼亚州旧金山。于1996年由布鲁斯特·卡勒及布鲁斯·吉里亚特创立。作为互联网档案馆的分支,受到杰奎琳·萨福拉的
  • 基频基本频率(或简称 基频、fundamental frequency),当发声体由于振动而发出声音时,声音一般可以分解为许多单纯的正弦波,也就是说所有的自然声音基本都是由许多频率不同的正弦波组成
  • 基因座在生物学与进化计算中,基因座(英语:locus),也称为“基因位点”或“位点”,是指染色体上的固定位置,例如某个基因的所在。而基因座上的DNA序列可能有许多不同的变化,各种变化形式称为
  • 哲学研究《哲学研究》是英籍奥地利哲学家路特维希·维特根施坦的著作。《哲学研究》讨论的问题涵盖了语义学、逻辑学、数学哲学,语言哲学和心灵哲学等领域。它是二十世纪最重要的哲学
  • 牙套牙齿矫正器,又称齿列矫正器或俗称的牙套、牙箍,是齿列矫正所使用的一种装置,用来矫正牙齿至适当的咬合位置。矫正器通常被用来改善的咬合不良,包括戽斗、龅牙、前后牙错咬、开咬
  • 东医学东医学(越南语:Đông y),又称为越南传统医学(英语:Vietnamese Traditional Medicine),是一种传统医学,源自于汉医学。相对于西方医学,越南为东方,故称为东医学。越南东医学,又分成以中
  • 证书广义上的证书,用来证明某些特殊专长所使用,或身份证明使用。 证书(Certificate)可以指:
  • 圈量子引力论圈量子重力论(loop quantum gravity,LQG),又译回圈量子引力论,英文别名圈引力(loop gravity)、量子几何学(quantum geometry);由阿贝·阿希提卡、李·斯莫林、卡洛·罗威利等人发展出
  • VENI VIDI VICI我来,我见,我征服(拉丁语:VENI VIDI VICI,国际音标:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2