轨道对称

✍ dations ◷ 2025-04-04 20:37:08 #轨道对称
分子对称性描述分子的对称性表现并根据分子的对称性对分子作分类。分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和它的光谱学数据(以拉波特规则之类的选择定则为基础)。在大学程度的物理化学、量子化学与无机化学教科书中,都有关于对称性的章节。在各种不同的分子对称性研究架构中,群论是一项主流。这个架构在分子轨域的对称性研究中也很有用,例如应用Hückel分子轨道法、配位场理论和Woodward-Hoffmann规则等。另一个规模较大的架构,是利用晶体系统来描述材料的晶体对称性。实际测定分子的对称性有许多技术,包括X射线晶体学和各种形式的光谱。光谱学符号是以各种对称条件为基础。分子对称性的研究是取自于数学上的群论。分子对称性可分成5种对称元素。这5种对称元素都有其对称操作。对称操作为了与对称元素作区别,通常但不绝对的,会加上脱字符号。所以Ĉn是一个分子绕轴旋转,而Ê为其恒等元素操作。一个对称元素可以有一个以上与它相关的对称操作。因为 C1 与 E、S1 与 σ 、 S2 与 i相等,所有的对称操作都可以分成真转动或非真转动(proper or improper rotations)。点群是一组对称操作 (symmetry operation),符合数论中群的定义,在群中的所有操作中至少有一个点固定不变。三维空间中有32组这样的点群(英语:point groups in three dimensions),其中的30组与化学相关。 它们以向夫立符号为分类基础。一个对称操作的集合组成一个群,with operator the application of the operations itself,当:群的阶为该群中对称操作的数目。例如,水分子的点群是 C2v,对称操作是 E, C2, σv 和 σv'。它的顺序为 4。每一个操作都是它本身的相反。 以一个例子做结,在一个σv反射后做再一个 C2旋转会是一个σv' 对称操作 (注意:"在 B后做 A操作形成 C 记作 BA = C"):σv*C2 = σv'下表为典型分子的点群列表。对称操作可用许多方式表示。一个方便的表征是使用矩阵。在直角坐标系中,任一个向量代表一个点,将其以对称操作转换左乘(left-multiplying)得出新的点。结合操作则为矩阵的乘法: C2v 的例子如下:像这样的表示虽然存在无限多个,但是群的不可约表示(或irreps)被普遍使用,因为所有其他的群的表示可以被描述为一个不可约表示的线性组合。对每个点群而言,一个特征表汇整了它的对称操作和它的不可约表示(irreducible representations)的资料。因为它总是与不可约表示的数量和对称操作的分类相等,所以表格都是正方形。表格本身包含了当使用一个特定的对称操作时,特定的不可约表示如何转换的特征。在一个分子点群中的任一作用于分子本身的对称操作,将不会改变分子点群。但作用于一般实体,例如一个向量或一个轨域,这方面的需求并非如此。矢量可以改变符号或方向,轨域可以改变类型。对于简单的点群,值不是 1 就是 −1:1表示符号或相位(矢量或轨域)在对称操作的作用下是不变的(对称),而 −1表示符号变成(不对称)根据下列的规定标示表征:表中还记录如下的资料:笛卡尔矢量及其如何旋转,和它的二次方程的如何用群的对称操作来转换,特别是以相同方法转换不可约表示。这些资料一般显示在表格的右边。这些资料是有用的,因为分子中的化学重要轨道(特别是 p 和 d 轨道)具有相同的对称性。下表为C2v对称点群特征表:承接C2v的例子,考虑水分子中氧原子的轨域:2px垂直于分子平面,且以一个 C2 与一个 σv'(yz) 操作改变符号,但与其他两个操作仍保持不变(显而易见的,恒等操作的特征恒为+1)。因此这个轨域的特征集合为( 1, −1, 1, −1),与B1不可约表示相符合。同样地,2pz轨域被认为有A1不可约表示的对称性, 2py B2,和 3dxy轨域 A2。这些分配和其他的都在表格最右边的两个字段中注明。1929年时,汉斯·贝特在他的配位场理论研究中使用点群操作来作描述,尤金·维格纳则使用群论解释分子振动。拉斯洛·蒂萨(英语:László Tisza)(1933)整理出第一个特征表,之后再加入振动光谱。罗伯特·S·马利肯为第一个将特征表以英文发表的人(1933),埃德加·布莱特·威尔逊(英语:Edgar Bright Wilson)在1934年用它来预测振动的简正波的对称性。 Rosenthal与Murphy在1936年发表32点群的完整集合。

相关

  • 尿道尿道(拉丁语学名:Urethra)是动物体内泌尿系统的器官之一。它从膀胱连通到体外,它的作用是将尿排出体外。在雄性哺乳动物中它还有将精液导出的作用,因此也是生殖器官之一。在胚胎
  • 白化病白化症(Albinism、albino)是由于体内黑色素缺乏,导致眼呈红色、毛发与皮肤颜色呈现白色;若虹膜并非红色而呈蓝或灰色,且肤色及毛发偏淡或颜色不均而非纯白,则是白色亚种而非白化症
  • 孟加拉语孟加拉语(bāṅlā / বাংলা 或者 bāṅālī / বাঙালী)又称为孟加拉文,属于印欧语系印度-伊朗语族的印度-雅利安语支,是孟加拉国和印度西孟加拉邦和特里普拉邦的官方
  • 理查·多尔威廉·理查德·沙博·多尔爵士,CH, OBE, FRS(英语:Sir William Richard Shaboe Doll,1912年10月28日-2005年7月24日),英国科学家及流行病学家,与另一科学家奥斯汀·布拉德福德·希
  • 皮尔逊积矩相关系数在统计学中,皮尔逊积矩相关系数(英语:Pearson product-moment correlation coefficient,又称作 PPMCC或PCCs, 文章中常用r或Pearson's r表示)用于度量两个变量X和Y之间的相关程度
  • 操作系统操作系统(英语:Operating System,缩写:OS)是管理计算机硬件与软件资源的系统软件,同时也是计算机系统的内核与基石。操作系统需要处理如管理与配置内存、决定系统资源供需的优先次
  • 海涅克里斯蒂安·约翰·海因里希·海涅(德语:Christian Johann Heinrich Heine,1797年12月13日-1856年2月17日),出生时用名哈里·海涅(Harry Heine),19世纪最重要的德国诗人和新闻工作者
  • 菜籽固醇菜籽固醇(英语:Brassicasterol,简称BR, 又称为5,22-二烯-24S-甲基-3β-胆固醇、5,22-二烯-麦角甾-3β-醇、菜籽甾醇)是一种由一些单细胞藻类(浮游植物)以及某些陆生植物(如油菜)合成
  • 皮肤划痕症皮肤划痕症,又称为人工荨麻疹,是皮肤病的一种,通常患者也有湿疹,属于荨麻疹的一种类型。常见的皮肤划痕症有两种,分别是“单纯性皮肤划痕症”和“症状性皮肤划痕症”。“单纯性
  • 阿布鲁佐阿布鲁佐(意大利语:Abruzzo,发音:)位于意大利中部,北与马尔凯交接,拉齐奥位于其西南,东南部是莫利塞大区,东边则是亚得里亚海。该区于1963年从原阿布鲁齐-莫利塞大区(Abruzzi e Molise