首页 >
轨道对称
✍ dations ◷ 2025-12-03 10:54:19 #轨道对称
分子对称性描述分子的对称性表现并根据分子的对称性对分子作分类。分子对称性在化学中是一项基础概念,因为它可以预测或解释许多分子的化学性质,例如分子振动、分子的偶极矩和它的光谱学数据(以拉波特规则之类的选择定则为基础)。在大学程度的物理化学、量子化学与无机化学教科书中,都有关于对称性的章节。在各种不同的分子对称性研究架构中,群论是一项主流。这个架构在分子轨域的对称性研究中也很有用,例如应用Hückel分子轨道法、配位场理论和Woodward-Hoffmann规则等。另一个规模较大的架构,是利用晶体系统来描述材料的晶体对称性。实际测定分子的对称性有许多技术,包括X射线晶体学和各种形式的光谱。光谱学符号是以各种对称条件为基础。分子对称性的研究是取自于数学上的群论。分子对称性可分成5种对称元素。这5种对称元素都有其对称操作。对称操作为了与对称元素作区别,通常但不绝对的,会加上脱字符号。所以Ĉn是一个分子绕轴旋转,而Ê为其恒等元素操作。一个对称元素可以有一个以上与它相关的对称操作。因为 C1 与 E、S1 与 σ 、 S2 与 i相等,所有的对称操作都可以分成真转动或非真转动(proper or improper rotations)。点群是一组对称操作 (symmetry operation),符合数论中群的定义,在群中的所有操作中至少有一个点固定不变。三维空间中有32组这样的点群(英语:point groups in three dimensions),其中的30组与化学相关。 它们以向夫立符号为分类基础。一个对称操作的集合组成一个群,with operator the application of the operations itself,当:群的阶为该群中对称操作的数目。例如,水分子的点群是 C2v,对称操作是 E, C2, σv 和 σv'。它的顺序为 4。每一个操作都是它本身的相反。 以一个例子做结,在一个σv反射后做再一个 C2旋转会是一个σv' 对称操作 (注意:"在 B后做 A操作形成 C 记作 BA = C"):σv*C2 = σv'下表为典型分子的点群列表。对称操作可用许多方式表示。一个方便的表征是使用矩阵。在直角坐标系中,任一个向量代表一个点,将其以对称操作转换左乘(left-multiplying)得出新的点。结合操作则为矩阵的乘法: C2v 的例子如下:像这样的表示虽然存在无限多个,但是群的不可约表示(或irreps)被普遍使用,因为所有其他的群的表示可以被描述为一个不可约表示的线性组合。对每个点群而言,一个特征表汇整了它的对称操作和它的不可约表示(irreducible representations)的资料。因为它总是与不可约表示的数量和对称操作的分类相等,所以表格都是正方形。表格本身包含了当使用一个特定的对称操作时,特定的不可约表示如何转换的特征。在一个分子点群中的任一作用于分子本身的对称操作,将不会改变分子点群。但作用于一般实体,例如一个向量或一个轨域,这方面的需求并非如此。矢量可以改变符号或方向,轨域可以改变类型。对于简单的点群,值不是 1 就是 −1:1表示符号或相位(矢量或轨域)在对称操作的作用下是不变的(对称),而 −1表示符号变成(不对称)根据下列的规定标示表征:表中还记录如下的资料:笛卡尔矢量及其如何旋转,和它的二次方程的如何用群的对称操作来转换,特别是以相同方法转换不可约表示。这些资料一般显示在表格的右边。这些资料是有用的,因为分子中的化学重要轨道(特别是 p 和 d 轨道)具有相同的对称性。下表为C2v对称点群特征表:承接C2v的例子,考虑水分子中氧原子的轨域:2px垂直于分子平面,且以一个 C2 与一个 σv'(yz) 操作改变符号,但与其他两个操作仍保持不变(显而易见的,恒等操作的特征恒为+1)。因此这个轨域的特征集合为( 1, −1, 1, −1),与B1不可约表示相符合。同样地,2pz轨域被认为有A1不可约表示的对称性, 2py B2,和 3dxy轨域 A2。这些分配和其他的都在表格最右边的两个字段中注明。1929年时,汉斯·贝特在他的配位场理论研究中使用点群操作来作描述,尤金·维格纳则使用群论解释分子振动。拉斯洛·蒂萨(英语:László Tisza)(1933)整理出第一个特征表,之后再加入振动光谱。罗伯特·S·马利肯为第一个将特征表以英文发表的人(1933),埃德加·布莱特·威尔逊(英语:Edgar Bright Wilson)在1934年用它来预测振动的简正波的对称性。
Rosenthal与Murphy在1936年发表32点群的完整集合。
相关
- 职业性职业病是是指企业、事业单位和个体经济组织等用人单位的劳动者在职业活动中,因接触粉尘、放射性物质和其他有毒、有害因素而引起的疾病。这一概念不仅限于生产性质的企业,也包
- 新型隐球菌病隐球菌病(英语:Cryptococcosis、Cryptococcal disease)是一种可能致命的真菌疾病,由一或二种真菌造成:新型隐球菌(Cryptococcus neoformans)与Cryptococcus gattii,两者原本都被认为
- 氧化银电池氧化银电池,又称银锌电池或锌-氧化银电池,是以银的氧化物作正极、锌作负极、碱性溶液作电解质的一种电池。既可做成一次电池,也可做成蓄电池,但两者的其他辅助成分与制造方式有
- 千克千克(英语:kilogram,单位符号kg),又称公斤,国际单位制中质量的基本单位。在国际单位制的七个基本单位中,千克是唯一一个带有词头的基本单位。在2019年5月20日之前,千克仍是国际单位
- 乍得语族乍得语族(Chadic languages)是亚非语系(闪含语系)之下的语族之一,语言人口主要分布于中、西非的尼日利亚北部、尼日尔、乍得、中非共和国及喀麦隆。乍得语族大致上可以分为比乌
- 张天霖张天霖(1978年10月31日-)台湾男演员,毕业于漳和国中、台北市立建国中学补校、真理大学运动管理学系。主要演艺工作以电视剧为主,另有广告代言与 MV 演出,也有跨行书籍著作及电影导
- 昆明医科大学昆明医科大学,是中国云南省昆明市的一所公立医科高等学校。自20世纪90年代,昆明地区一直有传言称其将与云南大学合并,但至今未果。1933年9月,云南省东陆大学医学专科班创建。193
- 蜀汉(221年-263年,又称蜀汉)为中国历史上三国时期西南方的一个政权。于221年由昭烈帝称帝开始,至263年曹魏攻入蜀地,后主投降为终,共经过43年,二帝统治。汉昭烈帝刘备、汉丞相武乡侯诸
- 伤寒玛莉玛丽·马伦(英语:Mary Mallon,1869年9月23日-1938年11月11日),爱尔兰人,1883年独自移民至美国,是美国第一位被发现的伤寒健康带原者,因此被称为伤寒玛丽(Typhoid Mary)。玛丽是一个厨师
- 扫描电化学扫描电化学显微镜(缩写SECM)基于电化学原理工作,可测量微区内物质氧化或还原所给出的电化学电流。利用驱动非常小的电极(探针)在靠近样品处进行扫描,样品可以是导体、绝缘体或半导
