噪声通道编码定理

✍ dations ◷ 2025-08-20 11:19:58 #噪声通道编码定理
在信息论里,有噪信道编码定理指出,尽管噪声会干扰通信信道,但还是有可能在信息传输速率小于信道容量的前提下,以任意低的错误概率传送数据信息。这个令人惊讶的结果,有时候被称为信息原理基本定理,也叫做香农-哈特利定理或香农定理,是由克劳德·艾尔伍德·香农于1948年首次提出。通信信道的信道容量或香农限制是指在指定的噪音标准下,信道理论上的最大传输率。根据香农1948年的陈述,本定理描述了在不同级别的噪音干扰和数据损坏情况下,错误监测和纠正可能达到的最高效率。定理没有指出如何构造错误监测的模型,只是告诉大家有可能达到的最佳效果。香农定理可以广泛应用在通信和数据存储领域。本定理是现代信息论的基础理论。香农只是提出了证明的大概提纲。1954年,艾米尔·范斯坦第一个提出了严密的论证。香农定理假设一个有噪音的信道,信道容量为C,信息以速度R传送,如果那么就存在一种编码技术使接收端收到的错误达到任意小的数值。这意味着理论上,有可能无错误地传送信息直到达到速度限制C。反过来同样重要。如果那么想达到任意小的错误率是不可能实现的。因此,在传送速度超过信道容量的时候,可靠传输信息是不能被保证的。定理并没有指出在什么特殊情况下速度和容量相等。简单的流程如"重复发送数据3遍,用一个投票系统在数据不一样的时候选择3个里面相同的那两个的值"是低效的错误纠正的方式,不能保证数据块能完全没有错误地传送。先进一些的技术如里德-所罗门码编码技术和更现代一些的Turbo码、LDPC码等编码技术更逼近香农限制,但是计算复杂度很高。定理(香农,1948年):和信息论的其它主要结果一样,噪音信道编码定理包括一个可以实现的结果和相应的相反的结果。这两个组成部分中间有一个界线。在本案例中,可以通过有噪音的信道的可能速度的集合和相应边界显示出这是一个紧密边界。下面的证明框架只是已有的许多种不同证明方法中的一种而已。下面这个可实现性的证明是使用渐近等同分割特性(Asymptotic equipartition property(英语:Asymptotic equipartition property) - AEP)方法。另一种信息论常用证明方法是错误列举法(Error Exponent(英语:Error Exponent))。两种证明方法都使用随机编码参数来构造信道。这样的目的是减少计算的复杂度,同时仍旧可以证明在速度低于信道容量的时候,存在误码率在可接受范围甚至是接近于理想的无失真的编码方式。采用AEP相关的参数,一个指定的信道,长度为n的源字符串 X 1 n {displaystyle X_{1}^{n}} ,和长度为n的信道输出的字符串 Y 1 n {displaystyle Y_{1}^{n}} ,我们可以定义一个以下匹配序列集合:我们可以说两个序列 X 1 n {displaystyle {X_{1}^{n}}} 和 Y 1 n {displaystyle Y_{1}^{n}} 是匹配序列,如果它们是基于上述定义的匹配序列集合。步骤这个流程产生的错误可以分成两个部分:定义: E i = { ( X 1 n ( i ) , Y 1 n ) ∈ A ϵ ( n ) } , i = 1 , 2 , . . . , 2 n R {displaystyle E_{i}={(X_{1}^{n}(i),Y_{1}^{n})in A_{epsilon }^{(n)}},i=1,2,...,2^{nR}}作为消息1发送出去,消息i作为匹配的消息接收到的结果。我们可以发现如果信道 R < I ( X ; Y ) {displaystyle R<I(X;Y)} ,n变为无穷大,错误的可能性将降为0。最后,假设平均的编码方式是“好”的话,我们知道存在一个编码方式的效率比平均的值要好,因此可以满足我们在有噪音的信道低误码率的要求。假设一种编码有 2 n R {displaystyle 2^{nR}} 个编码词语。W假设为在这个集合上的一个索引。设 X n {displaystyle X^{n}} 和 Y n {displaystyle Y^{n}} 分别为编码词和接收到的词。这些步骤的结果是 P e ( n ) ≥ 1 − 1 n R − C R {displaystyle P_{e}^{(n)}geq 1-{frac {1}{nR}}-{frac {C}{R}}} 。当块的长度变为无穷大,如果R比C大,我们得到 P e ( n ) {displaystyle P_{e}^{(n)}} 不可能降到0。只有在R比C小的情况下,我们可以得到任意低的误码率。强逆定理证明由Wolfowitz于1957年提出。,证明归结于证明如下不等式,其中 A {displaystyle A} 为有限的正常数。当 n {displaystyle n} 变为无穷大的时候,弱逆定理证明错误的可能性不可能变成0,而强逆定理证明了错误以指数方式趋向于1。因此, C {displaystyle C} 是可靠连接和不可靠连接的临界点。我们假设信道是无记忆的,但是随着时间的变化,传输的可靠性是变化的。发送端和接收端一样工作正常。这样信道容量如下针对每个不同的信道,计算出取得该信道容量似的分布,以求得上式中的最大值,这样 C = lim inf 1 n ∑ i = 1 n C i {displaystyle C=liminf {frac {1}{n}}sum _{i=1}^{n}C_{i}} ,信道i的容量为 C i {displaystyle C_{i}} 。证明方法和上面信道编码定理几乎一样。在指定的信道里面,每一个符号的选择是随机的,编码方式也是随机的,采用渐近等同分割特性(AEP)方法来定义变化的无记忆信道的参数集。当 1 n ∑ i = 1 n C i {displaystyle {frac {1}{n}}sum _{i=1}^{n}C_{i}} 不收敛时,下极限开始起作用。

相关

  • 威廉·S·蒂利特威廉·S·蒂利特(英语:William Smith Tillett,1892年7月10日-1974年4月4日),美国内科医师和微生物学家,纽约大学医学院(英语:New York University School of Medicine)教授,出生于北卡
  • 失认症失认症(英语:agnosia)是指由大脑受损而导致的认知障碍。患者在意识正常、无感觉障碍的情况下,对传入的感觉刺激缺乏认识能力,包括物体失认、相貌失认、听觉失认等。须注意的是,此
  • 切尔西药草园切尔西药草园(Chelsea Physic Garden)是英国首都伦敦的一座花园,创建于1673年。这座花园是英国历史第三古老的植物园,仅次于牛津大学植物园和爱丁堡皇家植物园。切尔西药草园的
  • 饼干曲奇(美式英文:Cookie)是一种小而扁平和甜的烘焙或煮熟的食物。它通常含有面粉,糖和某种油或脂肪。也有可能包括其他原料,如葡萄干,燕麦,巧克力片,坚果,果酱等。在美国与加拿大解为细
  • 痕量痕量同位素是微量的自然放射性同位素。由于原始核素往往大于微量,可以推论相对于地球的年龄而言,痕量同位素的半衰期一般比较短。微量放射性同位素的存在,原因在于他们在地球上
  • 电磁炉电磁炉是一种使用电力的烹调工具,属于暗火煮食炉具。使用时炉身不会大量发热,是利用电磁感应加热(induction heating)使煮食器皿发热,炉身相对较低温和安全(炉身灼伤人的机会较低)
  • 大韩民国标准语大韩民国标准语(朝鲜语:대한민국 표준어/大韓民國標準語?),通常简称为标准语(朝鲜语:표준어/標準語?),是韩国使用的标准韩语,被其管理机构——韩国国立国语院定义为“有文化修养的人们
  • 环形球仪浑天仪(也可以称为球形等高仪或浑仪,英文缩写为armilla或armil)是中国和希腊古代测定天体位置的一种仪器。由相应天球坐标系各基本圈的环规及瞄准器构成,与浑象(浑天仪,一种仿真天
  • 消除消除反应(又称脱去反应或消去反应),是一种有机反应。是指一有机化合物分子和其他物质反应,失去部分原子或官能基(称为离去基)。反应后的分子会产生多键,为不饱和有机化合物。消除反
  • 冬眠冬眠指的是变温动物、某些哺乳类动物和少部分的鸟类在寒冷的季节,会通过降低体温的方式而进入的类似昏睡的生理状态。灵长类动物如粗尾侏儒狐猴(Cheirogaleus medius)等亦可行