首页 >
公理系统
✍ dations ◷ 2025-11-18 11:49:12 #公理系统
数学上,一个公理系统(英语:Axiomatic system,或称公理化系统,公理体系,公理化体系)是一个公理的集合,从中一些或全部公理可以一并用来逻辑地导出定理。一个数学理论由一个公理系统和所有它导出的定理组成。一个完整描述出来的公理系统是形式系统的一个特例;但是通常完全形式化的努力仅带来在确定性上递减的收益,并让人更加难以阅读。所以,公理系统的讨论通常只是半形式化的。一个形式化理论通常表示一个公理系统,例如在模型论中表述的那样。一个形式化证明是一个证明在形式化系统中的表述。一个公理系统称为自洽(或称相容、一致),如果它没有矛盾,也就是说没有从公理同时导出一个命题及其否定的能力。在一个公理系统中,一个公理被称为独立的,若它不是一个从系统的其它公理可以导出的定理。一个系统称为独立的,若它的每个公理都是独立的。虽然独立性不是一个系统的必要需求,自洽性却是必要的。若一个公理系统中,每个命题及其否定命题中至少有一方可被证明,则称该公理系统为完备 。公理系统的数学模型是一个定义良好的集合,它给系统中出现的未定义术语赋予意义,并且是用一种和系统中所定义的关系一致的方式。具体模型的存在性能证明系统的自洽性。模型也可以用来显示一个公理在系统中的独立性。通过构造除去一个特定公理的子系统的有效模型,我们表明该省去的公理是独立的,若它的正确性不可以从子系统得出。两个模型被称为同构,如果它们的元素可以建立一一对应,并且以一种保持它们之间的关系的方式。一个其每个模型都同构于另一个的公理系统称为范畴式的,而可范畴化的性质保证了系统的完备性。第一个被提出的公理系统是欧氏几何。公理化方法经常被作为一个单一的方法或着一致的过程来讨论。以欧几里得为榜样,它确实在很多世纪中被这样对待:直到19世纪初叶,在欧洲数学和哲学中古希腊数学的遗产代表了智力成就(在几何学家的风格中,更几何的发展)的最高标准这件事被视为理所当然(例如在斯宾诺莎的著作中所述)。这个传统的方法中,公理被假设为不言自明的,所以无可争辩,这在19世纪逐渐被扫除,这是随着非欧几何的发展,实分析的基础,康托的集合论和弗雷格在数学基础方面的工作,以及希尔伯特的公理方法作为研究工具的“新”用途而发生的。例如,群论在该世纪末第一个放到了公理化的基础上。一旦公理被明确地提出(例如,逆元必须存在),该课题就可以自主的进展,无须参考这类研究的起源—变换群。所以,现在在数学以及它所影响的领域中,至少有3种“模式”的公理化方法。调皮地说,可能的态度有:第一种情况是经典的演绎方法。第二种采用了博学点,一般化这个口号;它和概念可以和应该用某种内在的自然的广泛性来表达的假设是一致的。第三种在20世纪数学中有显著的位置,特别是在基于同调代数的课题中。很显然公理化方法在数学之外是有局限性的。例如,在政治哲学中,导致不可接受的结论的公理很可能被彻底拒绝;所以没有人真的认同上面的第一个版本。
相关
- 脑积水脑积水(hydrocephalus、拉丁语:hydrocephalus,希腊语:υδροκεφαλία,又称水脑症,是一种发生于脑部,于脑内积聚脑脊液 (CSF) 的病症,指循环于蜘蛛网膜下腔包围着脑部与脊髓的
- 呕血呕血(hematemesis)是指患者呕吐出血液的症状,血液的来源为上消化道(即屈氏韧带以上的消化道,包括食管、胃、十二指肠或胰胆等的出血,胃空肠吻合术后的空肠出血也属于上消化道)。呕
- 铜绿碱式碳酸铜化学式为Cu2(OH)2CO3,也有写作CuCO3·Cu(OH)2,颜色翠绿,在自然界中铜通常以此种化合物的形式存在,它是铜与空气中的氧气、二氧化碳和水等物质反应产生的物质。不溶于
- 修道院病毒科修道院病毒科是一种由粉介壳虫和蚜虫传播的植物病毒。修道院病毒包括甜菜枯黄病毒(英语:Beet yellows virus)、莴苣传染性枯黄病毒(英语:Lettuce infectious yellows virus)、葡萄
- GAP良好农业规范 (Good Agricultural Practices, GAP)的一套用于农业生产且生产结果与执行者利益相一致的操作规范。对于由哪些方法组成“良好农业规范”,有着很多不同的定义。
- 莫达非尼莫达非尼(英文名Modafinil)是一种觉醒促进剂(英语:Wakefulness-promoting agent),被用于对发作性嗜睡病、轮班工作睡眠紊乱以及与阻塞性睡眠呼吸暂停相关的白天过度嗜睡(英语:Excess
- 将军 (古希腊)将军(strategoi)是古希腊统领军队的高级武官,这个称呼一直延续到东罗马帝国。直至今日,这个军衔也保留在希腊军队中,地位等同上将。另外,也是古希腊雅典城邦的民主政制中军事最高
- 杓肌杓肌(arytenoid muscle、arytenoid、/ærᵻˈtiːnɔɪd/)为一个单一的肌肉,填补杓状软骨的后凹表面。杓肌源自于杓状软骨的后表面及外侧边界,并被插入相对的软骨之相应部分。杓
- 肌肉酸痛肌肉痛(英语:Myalgia),如字面意思所言——肌肉疼痛,是多种疾病的症状,其最常见的成因是肌肉(群)的过度拉伸、过度使用。没有肌肉创伤史的肌肉痛则通常是由病毒感染所引起,而长期肌肉
- ≡↔⇔≡当且仅当的逻辑符号当且仅当(英语:if and only if,iff),在数字逻辑中,逻辑算符反异或闸(exclusive or)是对两个运算元的一种逻辑分析类型,符号为XNOR或ENOR或
