位错

✍ dations ◷ 2025-12-10 23:52:47 #晶体缺陷,材料科学,固体物理学

位错(英语:dislocation),在材料科学中,指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体缺陷)。从几何角度看,位错属于一种线缺陷,可视为晶体中已滑移部分与未滑移部分的分界线,其存在对材料的物理性能,尤其是力学性能,具有极大的影响。“位错”这一概念最早由意大利数学家和物理学家维托·伏尔特拉于1905年提出。

理想位错主要有两种形式:刃位错(edge dislocation)和 螺旋位错(screw dislocation)。混合位错(mixed dislocation)兼有前面两者的特征。

数学上,位错属于一种拓扑缺陷,有时称为“孤立子”或“孤子”。这一理论可以解释实际晶体中位错的行为:可以在晶体中移动位置,但自身的种类和特征在移动中保持不变;方向(伯格斯矢量)相反的两个位错移动到同一点,则会双双消失,或称“湮灭”,若没有与其他位错发生作用或移到晶体表面,那么任何单个位错都不会自行“消失”(即伯格斯矢量始终保持守恒)。

刃位错和螺位错是主要的两种位错类型。然而实际晶体中存在的位错往往是混合型位错,即兼具刃型和螺型位错的特征。

晶体材料由规则排列的原子构成,一般把这些原子抽象成一个个体积可忽略的点,把它们排列成的有序微观结构称为空间点阵。逐层堆垛的原子构成一系列点阵平面的,称为晶面(可以将晶体中原子的排列情况想像成把橙子规则地装进箱子里的样子)。具体的排列情况如图2所示。在无位错的晶体(完整晶体)中,晶面(图2中的红色平行四边形)以等间距规则地排列。

若一个晶面在晶体内部突然终止于某一条线处,则称这种不规则排列为一个刃位错。如图3和图4所示,刃位错附近的原子面会发生朝位错线方向的扭曲以致错位。刃位错可由两个量唯一地确定:第一个是位错线,即多余半原子面终结的那一条直线;第二个是伯格斯矢量(英语:Burgers vector)(Burgers vector,简称伯氏矢量或柏氏矢量),它描述了位错导致的原子面扭曲的大小和方向。对刃位错而言,其伯氏矢量方向垂直于位错线的方向。

利用弹性力学理论可求得刃位错导致的应力场为:

其中 μ 为材料的剪切模量,b 为伯格斯矢量,ν 为泊松比,x 和 y 为直角坐标分量。从上述解中可以看出,在含有多余半原子面的一侧( y > 0 {\displaystyle y>0} 为:

τ m = G 2 π   {\displaystyle \tau _{m}={\frac {G}{2\pi \ }}\,} 为剪切模量。一般常用金属的 值约为104MPa~105MPa,由此算得的理论切变强度应为103MPa~104MPa。然而在塑性变形试验中,测得的这些金属的屈服强度仅为0.5~10MPa,比理论强度低了整整3个数量级。这是一个令人困惑的巨大矛盾。

1934年,埃贡·欧罗万(英语:en:Egon Orowan)(Egon Orowan)、迈克尔·波拉尼(Michael Polanyi)和杰弗里·因格拉姆·泰勒(Geoffrey Ingram Taylor)三位科学家几乎同时提出了塑性变形的位错机制理论,解决了上述理论预测与实际测试结果相矛盾的问题,,。位错理论认为,之所以存在上述矛盾,是因为晶体的切变在微观上并非一侧相对于另一侧的整体刚性滑移,而是通过位错的运动来实现的。一个位错从材料内部运动到了材料表面,就相当于其位错线扫过的区域整体沿着该位错伯格斯矢量方向滑移了一个单位距离(相邻两晶面间的距离)。这样,随着位错不断地从材料内部发生并运动到表面,就可以提供连续塑性形变所需的晶面间滑移了。与整体滑移所需的打断一个晶面上所有原子与相邻晶面原子的键合相比,位错滑移仅需打断位错线附近少数原子的键合,因此所需的外加剪应力将大大降低。

在对材料进行“冷加工”(一般指在绝对温度低于0.3 下对材料进行的机械加工, 为材料熔点的绝对温度)时,其内部的位错密度会因为位错的萌生与增殖机制的激活而升高。随着不同滑移系位错的启动以及位错密度的增大,位错之间的相互交截的情况亦将增加,这将显著提高滑移的阻力,在力学行为上表现为材料“越变形越硬”的现象,该现象称为加工硬化(英语:Work hardening)(work hardening)或应变硬化(strain hardening)。缠结的位错常能在塑性形变初始发生时的材料中找到,缠结区边界往往比较模糊;在发生动态回复(英语:recovery (metallurgy))(recovery)过程后,不同的位错缠结区将分别演化成一个个独立的胞状结构,相邻胞状结构间一般有小于15°的晶体学取向差(小角晶界)。

由于位错的积累和相互阻挡所造成的应变硬化可以通过适当的热处理方法来消除,这种方法称为退火。退火过程中金属内部发生的回复或再结晶等过程可以消除材料的内应力,甚至完全恢复材料变形前的性能。

位错可以在包含了其伯格斯矢量和位错线的平面内滑移。螺位错的伯氏矢量平行于位错线,因此它可以在位错线所在的任何平面内滑移。而刃位错的伯氏矢量垂直于位错线,所以它只有一个滑移面。但刃位错还有一种在垂直于其滑移面方向上的运动方式,这就是攀移,即构成刃位错的多余半原子面的伸长或缩短。

攀移的驱动力来自于晶格中空位的运动。如图9所示,若一个空位移到了刃位错滑移面上与位错线相邻的位置上,则位错核心处的原子将有可能“跃迁”到空位处,造成半原子面(位错核心)向上移动一个原子间距,这一刃位错“吸收”空位的过程称为正攀移。若反之,有原子填充到半原子面下方,造成位错核心向下移动一个原子间距,则称为负攀移。

由于正攀移导致了多余半原子面的退缩,所以将使晶体在垂直半原子面方向收缩;反之,负攀移将使晶体在垂直半原子面方向膨胀。因此,在垂直半原子面方向施加的压应力会促使正攀移的发生,反之拉应力则会促使负攀移的发生。这是攀移与滑移在力学影响上的主要差别,因为滑移是由剪应力而非正应力促成的。

位错的滑移与攀移另一处差异在于温度相关性。温度的升高能大大增加位错攀移的概率。相比而言,温度对滑移的影响则要小得多。

相关

  • 年假年假也称年休,指的是劳工每年在公共假日以外,能够自由安排的有薪假日。大多数国家都有劳动权益保护法律规定雇员最低的年休天数。根据雇主的规定,雇员可能须要在指定的天数前预
  • 胚珠胚珠是种子植物由一或二层珠被所包覆的大孢子囊,每个大孢子囊会形成一枚(鲜为二枚以上)的大孢子,并在稍后形成雌配子体或者发育成胚囊,且在受精后会发育成为一枚种子。(内含一个
  • ASMPASMP中程空对地导弹(法语:Air-Sol Moyenne Portée,意为“中程空对地导弹”)是法国宇航为法国军队开发的一种空射超音速核子巡航导弹,属于法国核威慑力量(英语:Force de dissuasion
  • 消费者报告《消费者报告》(英语:Consumer Reports)是一本消费品测评类杂志,由非营利组织美国消费者联盟(英语:Consumers Union)(CU)在1936年创立。《消费者报告》根据内部测试实验室和调查研
  • 礼仪礼仪、礼节、礼貌是根据在社会、社会价值或者小组之间的当代常规准则影响社会行为的期望的代称。礼仪通常是不会有人刻意去规定和记载的,但是礼节的方面常被记录了。礼节包括
  • 义兴义兴是1644年6月北京街头揭帖声称拥立明朝末代皇太子朱慈烺继位后所使用的年号,但实际并未使用。洪武 → 建文 → 永乐 → 洪熙 → 宣德 → 正统 → 景泰 → 天顺 → 成化 →
  • 现代Rotem现代Rotem(韩语:현대로템;英语:Hyundai Rotem)是韩国一家出产铁路车辆、军事及厂房产品的公司,为现代汽车集团的一员,在韩国有逾3,800名员工,其产品出口国家达35个。使用现代Rotem制
  • 特拉华特拉华大学(University of Delaware,简称UD或UDel),美国德拉瓦州的最大的大学。主校区位于纽瓦克,在多佛、威尔明顿、刘易斯和乔治敦有分校区。1743年,特拉华大学的前身“自由学校
  • 资本财在经济学中,资本品(英语:capital good)是使用在生产过程中,用来生产产品或服务的耐用品,是由生产者投入的四种要素之一(另外三者为土地、人力及企业能力),四者合称为生产要素。在经济
  • 拔丝地瓜拔丝地瓜,是将地瓜(番薯,白薯)切块,炸熟。再在炒锅里放上少许油(初学者可以用水)和大量的白砂糖,用小火加热,直到糖融化变粘稠,然后将炸熟的地瓜放入混合(高级厨师可以在同一个锅里同时