联络 (向量丛)

✍ dations ◷ 2024-12-24 03:05:05 #联络,向量丛

在数学中,纤维丛上一个联络是一个定义丛上平行移动的装置;即将邻近点连接或等价的一种方法。如果纤维丛是向量丛,则平行移动的概念要求线性。这样的联络等价于一个共变导数,共变导数是一个能对截面关于底流形的切方向求微分的算子。联络在这个意义下,对任意向量丛,推广了光滑流形切丛的线性联络概念,经常叫做线性联络。

向量丛上的联络也经常称为科斯居尔联络,以让-路易·科斯居尔命名,他给出了描述这个联络的一个代数框架(Koszul 1950)。

设 → 是光滑流形 上的光滑向量丛。记 的光滑截面的空间为 Γ()。 上一个联络是一个 R-线性映射

使得莱布尼兹法则

对 上所有光滑函数 与 的所有光滑截面 σ 成立。

如果 是 上一个切向量场(即切丛 的一个截面),我们可以定义一个沿着 的共变导数:

通过缩并 与联络 ∇ 中的共变指标(即 ∇σ = (∇σ)())。共变导数满足如下性质:

反之,任何满足如上性质的算子定义了 上一个联络,联络在这种意义下也称为 上的共变导数。

设 → 是一个向量丛。一个 阶 -值微分形式是张量积丛 ⊗Λ* 的一个截面。这种形式的空间记作

一个 -值 0-形式就是 的一个截面,即

在这种记法下, → 上一个联络是线性映射

这样一个联络看作向量丛值形式的外导数的推广。事实上,给定 上一个联络 ∇ 有惟一的一种方法将 ∇ 延拓成共变外导数或称外共变导数

不像通常的外导数,这里不必有 (∇)2 = 0 。事实上,(∇)2 与联络 ∇ 的曲率直接相关,参见下面。

任何向量丛上都有联络,但是联络不是惟一的。如果 ∇1 与 ∇2 是 → 上两个联络则他们的差是一个 ∞-线性算子。即

对 上所有光滑函数 与 的所有截面 σ 成立。从而推出差 ∇1 − ∇2 由 上一个取值于自同态丛 End() = ⊗* 的 1-形式诱导

反之,如果 ∇ 是 上一个联络而 是 上取值为 End() 的 1-形式,则 ∇+ 是 上一个联络。

换句话说, 上联络的空间是一个对 Ω1(End ) 的仿射空间。

设 → 是一个秩 向量丛,令 F() 是 的主标架丛。则 F() 上一个(主)联络诱导了 上一个联络。首先注意到 的截面与左等变映射 F() → R 一一对应(这由考虑 在F() → 上的拉回可以看出来,同构于平凡丛 F() × R)。给定 的一个截面 σ,设对应的等变映射为 ψ(σ)。则 上的共变导数由

给出,这里 是 的水平提升(回忆到水平提升由 F() 上一个联络确定)。

反之, 上一个联络确定了 F() 上一个联络,且这两个构造是互逆的。

上一个联络也等价地由 上一个线性埃雷斯曼联络确定。这提供了构造相关的主联络的一个方法。

设 → 是一个秩 向量丛,令 是 的一个开子集使得 在 上平凡。给定 在 上一个局部光滑标架 (1, …,), 的任何截面 σ 可写成 σ = σ α e α {\displaystyle \sigma =\sigma ^{\alpha }e_{\alpha }} 上一个联络限制在 上具有形式:

这里

这里 ωαβ 定义了一个 × 矩阵,矩阵元取值为 上的 1-形式。事实上,给定任何如上形式的矩阵定义了 限制在 上一个联络。这是因为 ωαβ 确定了一个 1-形式 ω 取值于 End(),这个表达式定义 ∇ 为联络 d+ω,这里 d 是 在 上的平凡联络(定义为用局部标架对截面微分)。在这种情景下 ω 也称为 ∇ 关于这个局部标架的联络形式。

如果 是一个具有坐标 () 的坐标邻域,则我们可以写成

注意坐标与纤维指标在表达式中混合在一起。系数函数 ωαβ 对指标 具有张量性(它们定义了一个 1-形式)但对指标 α 与 β 不是。对纤维指标的变换法则更加复杂。设 (1, …,) 是 上另一个光滑局部标架,将坐标变换矩阵记作 (即 α = ββα)。关于标架(α) 的联络矩阵由矩阵表达式给出

这里 d 是对 的分量取外导数得到的 1-形式矩阵。

此局部坐标中关于这个局部标架场 (α) 的共变导数由如下表达式给出:

向量丛 → 上一个联络 ∇ 定义了 上沿着 的一条曲线的平行移动概念。设 γ : → 是 上一条光滑道路。 的沿着 γ 的一个截面 σ 称为平行,如果

对所有 ∈ 成立。更形式地,我们可考虑 通过 γ 的拉回 γ*。这是 上在 ∈ 处纤维为 γ() 的纤维丛。 上的联络 ∇ 拉回到 γ* 上一个联络。γ* 的一个截面 σ 平行当且仅当 γ*∇(σ) = 0.

假设 γ 在 中从 到 。如上定义平行截面的等式是一个一阶常微分方程从而对任何可能的初始条件有惟一解。即对任何向量 属于 存在 γ* 的惟一平行截面 σ 满足 σ(0) = 。定义平行移动映射

为 τγ() = σ(1)。可以证明 τγ 是一个线性同构。

平行移动可以用来定义联络 ∇ 以 中一点 为基点的和乐群。这是 GL() 的一个子群,由沿着基于 环路的所有平行移动映射组成:

一个联络的和乐群本质上与这个联络的曲率相关。

→ 上联络 ∇ 的曲率是一个 上 2-形式 ∇,取值于自同态丛 End() = ⊗*,即

曲率定义为表达式

这里 与 是 上的切向量场, 是 的一个截面。可以验证 ∇ 对 与 都是 ∞-线性的,从而确实定义了一个 的丛同态。

正如上面所提及的,共变外导数 ∇ 作用在 值形式上的平方不必是零。无论如何算子 (∇)2 严格有张量性(即 ∞-线性)。这意味着它由一个取值于 End() 的 2-形式诱导,这个 2-形式恰好就是如上给出的曲率形式。对一个 -值形式 σ 我们有

一个平坦联络是曲率形式恒等于零的联络。

相关

  • 国际组织国际组织是研究国际机关及其程序之一种学问;国际间为处理国际事务而设立机关,为便利处理事务而制定程序:1。具有国际性行为特征的组织,可以解决国与国之间的各项事务,国际组织可
  • 殊相在形而上学中,殊相(英语:Particular),又译具相、自相、具体,指各别存在的实体或个体。起源自古希腊哲学,各别殊相的共同性质为共相。以殊相及共相概念进行讨论的最早一批哲学家,为柏
  • 动情周期发情周期,又名动情周期,是雌性有胎盘哺乳类动物拥有的一种经常性生理变化,由身体的性激素所诱导产生。自前一次排卵期至下一次排卵期之间的时间长度称为一个周期。动物体内的各
  • 马如龙马如龙(1832年-1891年),回族,建水回龙人。字云峰,原名席珍,又字现彩,乳名阿五。出身忠良世家,先世江南人,咸丰六年(1856年)爆发云南回变,同治八年(1869年)清军反攻,起义军失利,退回滇西,这次失
  • 东京证券交易所东京证券交易所(日语:東京証券取引所/とうきょうしょうけんとりひきしょ Toukyoushoukentorihikisho;英语:Tokyo Stock Exchange)是日本的证券交易所之一,简称“东证”(日语:東証),总
  • 朗伯德街朗伯德街(Lombard Street)是伦敦市的一条著名街道,自中世纪以来即为银行和保险业中心,在19世纪、20世纪前半叶一度是英帝国乃至全世界最具影响力的银行、保险公司及商号总部聚集
  • 萧山区萧山区是中国浙江省杭州市的市辖区,原先后为绍兴专区萧山县、浙江省直辖萧山县、宁波专区萧山县、杭州市萧山县、浙江省萧山市(县级市,地级杭州市代管),2001年设立萧山区。地处钱
  • 鸿喜菇鸿喜菇(学名:)又称真姬菇、白玉菇、班玉蕈及蟹味菇(学名:),是一种原生于东亚温带以北、现时主要从日本引进的高经济价值食用蕈。本物种目前已于温带的欧洲、北美洲及澳大利亚种植作
  • 奄美大岛奄美大岛(日语:奄美大島/あまみおおしま  */?,琉球语:大島/ウシマ )是日本九州南方海面上奄美群岛中的主要岛屿,曾是古琉球一部分,盛产黑糖。明治维新后废藩置县,改属鹿儿岛县。奄
  • 焦磷酸钚(IV)焦磷酸钚(IV)是一种无机化合物,化学式为PuP2O7。焦磷酸钚(IV)可由115.3 g/L的硝酸钚(IV)和0.74 mol/L的磷酸溶液在80 °C反应得到。二氧化钚和磷酸二氢铵的固相反应会产生不