齐性空间

✍ dations ◷ 2025-11-07 16:17:10 #几何学,拓扑群,李群,齐性空间

在数学,特别是李群、代数群与拓扑群的理论中,关于群的一个齐性空间(homogeneous space)是一个非空流形或拓扑空间,可传递地作用在上,G中的元素称之为X的对称。一个特例是空间的自同构群,这里自同构群可以是等距同构群、微分同胚群或是同胚群。在这些例子中,如果直觉想成于任何地方局部看起来一样,则是齐性的。像是等距同构(刚体几何)、微分同胚(微分几何)或是同胚(拓扑)。一些作者要求的作用是有效的(或忠实),不过本文并不要求这样。从而上存在可以想象为保持上相同“几何结构”的一个群作用,使成为一个单-轨道。

设是一个非空集合,是一个群。如果存在在上一个作用,则称为一个-空间。注意通过自同构自动作用在这个集合上。如果还额外属于某一个范畴,则要求中元素的作用是这个范畴中的自同构。从而由在上产生的映射保持结构。一个齐性空间是一个作用传递的空间。

简明地说,如果是范畴C中一个对象,则一个-空间结构是到范畴C中对象的自同构群一个同态:

若ρ()是承载集合的一个传递的、对称群,则二元组 (,ρ)定义了一个齐性空间。

例如,若是一个拓扑空间,则要求群元素在上的作用是自同胚。-空间的结构是到自同胚群的一个群同态ρ : → Homeo()。

类似地,如果是一个微分流形,则群元素是微分同胚。-空间结构是到微分同胚群的一个群同态ρ : → Diffeo()。

从埃尔朗根纲领的观点,可以理解在的几何中“所有点是一样的”。十九世纪中叶黎曼几何提出之前的所有几何本质上都是如此。

例如欧几里得空间、仿射空间和射影空间都自然是相应对称群的齐性空间。这对常曲率非欧几里得几何模型,比如双曲空间,同样成立。

一个深一点的经典例子是三维射影空间里线组成的空间(等价于,四维向量空间中的二维子空间)。用简单的线性代数可以证明GL4传递作用在这个空间上。我们可用“线坐标”将其参数化:存在2×4矩阵的2×2 子式使得其列向量是子空间的两个基向量。所得空间的几何是尤里乌斯·普吕克(英语:Julius Plücker)的线几何。

一般地,如果是一个齐性空间,而o是中某一给定点的稳定子(选取一个原点),中的点对应于左陪集/o

选取不同的原点一般将得到商去一个不同子群o′,它与o相差一个的内自同构。准确地,

这里是中任何元素使得 = ′。注意内自同构 (1)与的选取无关,只取决与模去o

如果在上的作用连续,则是的一个闭子群。特别地,如果是一个李群,则由嘉当定理是一个闭李子群。从而/是一个光滑流形,并且带有与这个群作用相容惟一的光滑结构。

如果是恒同子群{},则是一个主齐性空间。

对线几何之例子,我们可将等同于16-维一般线性群

的一个12-维子群,由如下矩阵元素的条件定义

通过寻找前两个标准基向量生成的子空间的稳定子。这便证明了的维数是4。

因为由子式给出的齐次坐标有6个,这意味着后者不是互相独立的。事实上这六个子式间有一个二次关系,已为十九世纪的几何学家知道。

这个例子是比射影空间更早发现的第一个格拉斯曼流形。在数学的通常使用中有许多更深入的典型线性群的齐性空间。

准齐性向量空间概念由佐藤干夫提出。

它是带有一个代数群作用的有限维向量空间,使得存在的一个轨道在扎里斯基拓扑下是开集(从而稠密)。一个例子是GL1作用在一维空间空间上。

这个定义比它最初出现时更加严格:这样的空间具有不寻常的性质,不可约准齐性向量空间在相差一个称之为“castling”的转换下存在一个分类。

凡用到广义相对论的宇宙学都会使用比安基分类系统。相对论中的齐性空间代表某种宇宙模型的背景度量的空间部分;例如弗里德曼-勒梅特-罗伯逊-沃尔克度量的三个案例可以用比安基I(平坦),V(开),VII(平坦或开)与IX(闭)型子集来代表,而Mixmaster universe(英语:Mixmaster universe)代表一个比安基IX型宇宙的各向异性例子。

一个维齐性空间允许一个由(-1)/2 基灵向量场组成的集合。三维时,总共给出了六个线性无关的基灵向量场;齐性3-空间可以使用这些向量场的线性组合,来寻找在任何地方都非零的基灵向量场 ξ i ( a ) {\displaystyle \xi _{i}^{(a)}}

这里 C   b c a {\displaystyle C_{\ bc}^{a}} 为“结构常数”,是一个常秩-3张量,两个下指标反对称, ; {\displaystyle ;} 表示共变微分算子。在一个平坦各向同性宇宙情形,可能有 C   b c a = 0 {\displaystyle C_{\ bc}^{a}=0} (I型),但在闭FLRW宇宙情形, C   b c a = ε   b c a {\displaystyle C_{\ bc}^{a}=\varepsilon _{\ bc}^{a}} 这里 ε   b c a {\displaystyle \varepsilon _{\ bc}^{a}} 是列维-奇维塔符号。

相关

  • 软颚软颚或者软腭(医学拉丁语术语:Velum palatinum或Palatum molle)是哺乳动物中硬腭延长形成的一个双褶皱形状的口腔部分。它斜挂在或者垂直挂在舌根上方,是由咽腭肌和其它肌肉的延
  • 阿尔塔薛西斯一世阿尔塔薛西斯一世,又译亚他薛西斯一世(古波斯楔形文字:
  • 资产会计学上的资产(英文:Asset),指一企业透过交易或非交易事项所获得之经济资源,能以货币衡量,并预期未来能提供效益者。资产,就是能够为个人或企业带来收益的东西。在财务会计中,资产
  • 刚果王国刚果王国(1400年-1914年,刚果语:Wene wa Kongo)是位于非洲刚果河河口地区的古代部落联盟。在刚果王国的鼎盛时期,其疆域覆盖了西起大西洋海岸,东至宽果河,北起刚果河,南至宽扎河的广
  • 巴里·霍金斯巴里·霍金斯(英语:Barry Hawkins,1979年4月23日-)为出身于英国肯特郡的腾(英语:Ditton, Kent)的职业斯诺克选手,于1996年从业余转为职业身份;直到2004-2005斯诺克球季才开始有突出表
  • 关塔那摩关塔那摩(Guantánamo)是古巴东南部的一个城市,建于1819年,为关塔那摩省的省会。关塔那摩人口约为208,000人(1995年数据),大多数人靠糖业为生。在离城市15公里处的关塔那摩湾,坐落着
  • 约瑟夫·匹勒约瑟夫·匹勒(Josef "pips" Priller,1915年7月27日-1961年5月20日),是“第二次世界大战”时期德国空军的战斗机飞行员。匹勒是第二十六战斗机联队在位最久的联队长。他在生涯中的
  • 海岭罗海岭(朝鲜语:나해령 ,1994年11月11日-),艺名为海岭(朝鲜语:해령 ),韩国女艺人,于小时候为童星,参与演出过多部电视剧,曾经是EXID成员,队内职务为副唱、门面,于2012年4月30日退出。为BES
  • 代玮代玮(1997年12月1日-),中国大陆男歌手,出生于山东潍坊,现就读于浙江师范大学。2018年10月,作为演唱成员参加湖南卫视综艺节目《声入人心》第一季。代玮从小喜欢音乐,读小学的时候就
  • 李庸澈李庸澈(리용철,1967年-),出生于平壤市普通江区域,北朝鲜政治家及朝鲜劳动党成员,曾出任金日成金正日主义青年同盟委员长和最高人民会议代议员。现无官职在身。李庸澈的父亲为前朝鲜