齐性空间

✍ dations ◷ 2025-07-09 15:30:51 #几何学,拓扑群,李群,齐性空间

在数学,特别是李群、代数群与拓扑群的理论中,关于群的一个齐性空间(homogeneous space)是一个非空流形或拓扑空间,可传递地作用在上,G中的元素称之为X的对称。一个特例是空间的自同构群,这里自同构群可以是等距同构群、微分同胚群或是同胚群。在这些例子中,如果直觉想成于任何地方局部看起来一样,则是齐性的。像是等距同构(刚体几何)、微分同胚(微分几何)或是同胚(拓扑)。一些作者要求的作用是有效的(或忠实),不过本文并不要求这样。从而上存在可以想象为保持上相同“几何结构”的一个群作用,使成为一个单-轨道。

设是一个非空集合,是一个群。如果存在在上一个作用,则称为一个-空间。注意通过自同构自动作用在这个集合上。如果还额外属于某一个范畴,则要求中元素的作用是这个范畴中的自同构。从而由在上产生的映射保持结构。一个齐性空间是一个作用传递的空间。

简明地说,如果是范畴C中一个对象,则一个-空间结构是到范畴C中对象的自同构群一个同态:

若ρ()是承载集合的一个传递的、对称群,则二元组 (,ρ)定义了一个齐性空间。

例如,若是一个拓扑空间,则要求群元素在上的作用是自同胚。-空间的结构是到自同胚群的一个群同态ρ : → Homeo()。

类似地,如果是一个微分流形,则群元素是微分同胚。-空间结构是到微分同胚群的一个群同态ρ : → Diffeo()。

从埃尔朗根纲领的观点,可以理解在的几何中“所有点是一样的”。十九世纪中叶黎曼几何提出之前的所有几何本质上都是如此。

例如欧几里得空间、仿射空间和射影空间都自然是相应对称群的齐性空间。这对常曲率非欧几里得几何模型,比如双曲空间,同样成立。

一个深一点的经典例子是三维射影空间里线组成的空间(等价于,四维向量空间中的二维子空间)。用简单的线性代数可以证明GL4传递作用在这个空间上。我们可用“线坐标”将其参数化:存在2×4矩阵的2×2 子式使得其列向量是子空间的两个基向量。所得空间的几何是尤里乌斯·普吕克(英语:Julius Plücker)的线几何。

一般地,如果是一个齐性空间,而o是中某一给定点的稳定子(选取一个原点),中的点对应于左陪集/o

选取不同的原点一般将得到商去一个不同子群o′,它与o相差一个的内自同构。准确地,

这里是中任何元素使得 = ′。注意内自同构 (1)与的选取无关,只取决与模去o

如果在上的作用连续,则是的一个闭子群。特别地,如果是一个李群,则由嘉当定理是一个闭李子群。从而/是一个光滑流形,并且带有与这个群作用相容惟一的光滑结构。

如果是恒同子群{},则是一个主齐性空间。

对线几何之例子,我们可将等同于16-维一般线性群

的一个12-维子群,由如下矩阵元素的条件定义

通过寻找前两个标准基向量生成的子空间的稳定子。这便证明了的维数是4。

因为由子式给出的齐次坐标有6个,这意味着后者不是互相独立的。事实上这六个子式间有一个二次关系,已为十九世纪的几何学家知道。

这个例子是比射影空间更早发现的第一个格拉斯曼流形。在数学的通常使用中有许多更深入的典型线性群的齐性空间。

准齐性向量空间概念由佐藤干夫提出。

它是带有一个代数群作用的有限维向量空间,使得存在的一个轨道在扎里斯基拓扑下是开集(从而稠密)。一个例子是GL1作用在一维空间空间上。

这个定义比它最初出现时更加严格:这样的空间具有不寻常的性质,不可约准齐性向量空间在相差一个称之为“castling”的转换下存在一个分类。

凡用到广义相对论的宇宙学都会使用比安基分类系统。相对论中的齐性空间代表某种宇宙模型的背景度量的空间部分;例如弗里德曼-勒梅特-罗伯逊-沃尔克度量的三个案例可以用比安基I(平坦),V(开),VII(平坦或开)与IX(闭)型子集来代表,而Mixmaster universe(英语:Mixmaster universe)代表一个比安基IX型宇宙的各向异性例子。

一个维齐性空间允许一个由(-1)/2 基灵向量场组成的集合。三维时,总共给出了六个线性无关的基灵向量场;齐性3-空间可以使用这些向量场的线性组合,来寻找在任何地方都非零的基灵向量场 ξ i ( a ) {\displaystyle \xi _{i}^{(a)}}

这里 C   b c a {\displaystyle C_{\ bc}^{a}} 为“结构常数”,是一个常秩-3张量,两个下指标反对称, ; {\displaystyle ;} 表示共变微分算子。在一个平坦各向同性宇宙情形,可能有 C   b c a = 0 {\displaystyle C_{\ bc}^{a}=0} (I型),但在闭FLRW宇宙情形, C   b c a = ε   b c a {\displaystyle C_{\ bc}^{a}=\varepsilon _{\ bc}^{a}} 这里 ε   b c a {\displaystyle \varepsilon _{\ bc}^{a}} 是列维-奇维塔符号。

相关

  • 晕眩头晕(英语:Dizziness),是一种空间认知和稳定度的功能性障碍。头晕(dizziness)一词的定义较含糊不清,因为头晕可能是眩晕、晕厥前期(英语:presyncope) 、重心平衡障碍(英语:Balance disor
  • HBOsub2/sub偏硼酸(化学式:HBO2),白色粉末,可溶于水,易溶于盐酸。自然界有偏硼酸存在。偏硼酸加热至300°C脱水生成三氧化二硼,通常由硼酸加热脱水制成,一般可用于搪瓷和制硼玻璃等。
  • 总达客运总达客运股份有限公司(英文:All Day Bus),简称总达客运,是台湾的一家客运公司,1998年成立,营运地区主要在台中市、南投县,主要经营公路客运,2017年新增台中市公车服务。曾用英文名All
  • 紫菜包饭紫菜卷(韩语:김밥)是一种流行的朝鲜食品,是将蒸熟的白米饭和各种其他材料卷进紫菜中,再切成一块块供应。紫菜包饭通常在野餐或户外活动时吃,或作为简便的午餐,佐以萝卜干或泡菜。朝
  • 无毛猫斯芬克斯猫(Sphynx)又称加拿大无毛猫。这种猫是由于基因突变而产生的品种。体重3.5到7公斤,肌肉发达,毛发稀疏,皮肤皱褶似羚羊皮。头部棱角分明。微呈三角型。眼大呈柠檬状,多数呈
  • 外务大臣 (日本)外务大臣是主管日本外务省的国务大臣,是内阁中最重要的职位之一,一般由执政党内的实力派国会议员担任。如果内阁总理大臣(首相)有事、出访或生病,在没有副首相的情况下,往往会指定
  • 山橙山橙(学名:)是夹竹桃科山橙属的植物,为中国的特有种植物。分布在中国大陆的广西、广东等地,多生长在丘陵、山谷、攀援树木和石壁上,目前尚未由人工引种栽培。攀援木质藤本,长达10米
  • 伊达忠一伊达忠一(1939年1月20日-),日本政治家,现任参议院议长(第31代)。出身于北海道空知支厅芦别市,为自民党的参议院议员(3次当选)。在自民党内属于细田派(清和政策研究会)。出生于北海道。先
  • 沙贝斯塔尔沙贝斯塔尔是伊朗的城市,位于该国西北部,由东阿塞拜疆省负责管辖,距离首府大不里士60公里,海拔高度1,446米,市内有大学,2006年人口13,857,居民使用土耳其语。在萨法维王朝期间, 沙贝
  • 董学林董学林(1931年-1994年4月20日),男,山东莱城人,中华人民共和国政治人物。董学林是山东莱城西关人。1983年4月任第24军参谋长;1985年8月,担任河北省军区司令员;1988年被授予少将军衔。1