齐性空间

✍ dations ◷ 2025-11-01 16:03:24 #几何学,拓扑群,李群,齐性空间

在数学,特别是李群、代数群与拓扑群的理论中,关于群的一个齐性空间(homogeneous space)是一个非空流形或拓扑空间,可传递地作用在上,G中的元素称之为X的对称。一个特例是空间的自同构群,这里自同构群可以是等距同构群、微分同胚群或是同胚群。在这些例子中,如果直觉想成于任何地方局部看起来一样,则是齐性的。像是等距同构(刚体几何)、微分同胚(微分几何)或是同胚(拓扑)。一些作者要求的作用是有效的(或忠实),不过本文并不要求这样。从而上存在可以想象为保持上相同“几何结构”的一个群作用,使成为一个单-轨道。

设是一个非空集合,是一个群。如果存在在上一个作用,则称为一个-空间。注意通过自同构自动作用在这个集合上。如果还额外属于某一个范畴,则要求中元素的作用是这个范畴中的自同构。从而由在上产生的映射保持结构。一个齐性空间是一个作用传递的空间。

简明地说,如果是范畴C中一个对象,则一个-空间结构是到范畴C中对象的自同构群一个同态:

若ρ()是承载集合的一个传递的、对称群,则二元组 (,ρ)定义了一个齐性空间。

例如,若是一个拓扑空间,则要求群元素在上的作用是自同胚。-空间的结构是到自同胚群的一个群同态ρ : → Homeo()。

类似地,如果是一个微分流形,则群元素是微分同胚。-空间结构是到微分同胚群的一个群同态ρ : → Diffeo()。

从埃尔朗根纲领的观点,可以理解在的几何中“所有点是一样的”。十九世纪中叶黎曼几何提出之前的所有几何本质上都是如此。

例如欧几里得空间、仿射空间和射影空间都自然是相应对称群的齐性空间。这对常曲率非欧几里得几何模型,比如双曲空间,同样成立。

一个深一点的经典例子是三维射影空间里线组成的空间(等价于,四维向量空间中的二维子空间)。用简单的线性代数可以证明GL4传递作用在这个空间上。我们可用“线坐标”将其参数化:存在2×4矩阵的2×2 子式使得其列向量是子空间的两个基向量。所得空间的几何是尤里乌斯·普吕克(英语:Julius Plücker)的线几何。

一般地,如果是一个齐性空间,而o是中某一给定点的稳定子(选取一个原点),中的点对应于左陪集/o

选取不同的原点一般将得到商去一个不同子群o′,它与o相差一个的内自同构。准确地,

这里是中任何元素使得 = ′。注意内自同构 (1)与的选取无关,只取决与模去o

如果在上的作用连续,则是的一个闭子群。特别地,如果是一个李群,则由嘉当定理是一个闭李子群。从而/是一个光滑流形,并且带有与这个群作用相容惟一的光滑结构。

如果是恒同子群{},则是一个主齐性空间。

对线几何之例子,我们可将等同于16-维一般线性群

的一个12-维子群,由如下矩阵元素的条件定义

通过寻找前两个标准基向量生成的子空间的稳定子。这便证明了的维数是4。

因为由子式给出的齐次坐标有6个,这意味着后者不是互相独立的。事实上这六个子式间有一个二次关系,已为十九世纪的几何学家知道。

这个例子是比射影空间更早发现的第一个格拉斯曼流形。在数学的通常使用中有许多更深入的典型线性群的齐性空间。

准齐性向量空间概念由佐藤干夫提出。

它是带有一个代数群作用的有限维向量空间,使得存在的一个轨道在扎里斯基拓扑下是开集(从而稠密)。一个例子是GL1作用在一维空间空间上。

这个定义比它最初出现时更加严格:这样的空间具有不寻常的性质,不可约准齐性向量空间在相差一个称之为“castling”的转换下存在一个分类。

凡用到广义相对论的宇宙学都会使用比安基分类系统。相对论中的齐性空间代表某种宇宙模型的背景度量的空间部分;例如弗里德曼-勒梅特-罗伯逊-沃尔克度量的三个案例可以用比安基I(平坦),V(开),VII(平坦或开)与IX(闭)型子集来代表,而Mixmaster universe(英语:Mixmaster universe)代表一个比安基IX型宇宙的各向异性例子。

一个维齐性空间允许一个由(-1)/2 基灵向量场组成的集合。三维时,总共给出了六个线性无关的基灵向量场;齐性3-空间可以使用这些向量场的线性组合,来寻找在任何地方都非零的基灵向量场 ξ i ( a ) {\displaystyle \xi _{i}^{(a)}}

这里 C   b c a {\displaystyle C_{\ bc}^{a}} 为“结构常数”,是一个常秩-3张量,两个下指标反对称, ; {\displaystyle ;} 表示共变微分算子。在一个平坦各向同性宇宙情形,可能有 C   b c a = 0 {\displaystyle C_{\ bc}^{a}=0} (I型),但在闭FLRW宇宙情形, C   b c a = ε   b c a {\displaystyle C_{\ bc}^{a}=\varepsilon _{\ bc}^{a}} 这里 ε   b c a {\displaystyle \varepsilon _{\ bc}^{a}} 是列维-奇维塔符号。

相关

  • 英国皇家海军陆战队英国皇家海军陆战队(英语:Corps of Royal Marines,缩写为RM),属于英军的轻装步兵,并兼为两栖作战或海陆空协同作战部队,及雪地作战、山地作战专门部队,与英国皇家海军共同组成女王陛
  • 金属风暴金属风暴有限公司(Metal Storm Limited,ASX: MST)是一家研究及开发公司,主要从事电子式弹道武器技术,金属风暴一名是其公司名称亦是其武器技术的名称。2012年7月20日从澳大利亚
  • Mycoplasma鸡毒支原体 M. gallisepticum 生殖支原体 M. genitalium 人型支原体 M. hominis 猪肺炎支原体 M. hyopneumoniae 绵羊肺炎支原体 M. ovipneumoniae 肺炎支原体 M. pneumonia
  • 炮艇巡逻舰,海军舰艇中,护卫舰以下一级的水面作战舰,吨位数可从数十吨到数百吨不等,功能视设计具体情况而定,可能用于扫雷、反潜、导弹或鱼雷突袭、近岸巡逻、巡河、情报搜集、缉私、
  • 陈大年陈大年(1898年-1951年)福建福州胪雷人,海军上将陈绍宽族侄。字昌震。其早年毕业于福州英华书院。曾任福州邮务工会负责人、福州市总工会理事长、全国邮务总工会执行委员。1942年
  • 椰楼映画椰楼映画(英文:Yellow Pictures)是由马来西亚著名导演黄巧力所主创的国际影视制作公司,以制作深具马来西亚特色的影片著称。成立于2006年10月,核心成员包括资深制作人陈晓薇及主
  • 沃德·亚伯拉罕沃德·亚伯拉罕(匈牙利语:Wald Ábrahám;1902年10月31日-1950年12月13日)匈牙利数学家、美国哥伦比亚大学教授,在决策论、几何学、计量经济学等方面有所贡献,第二次世界大战期间为
  • 朝鲜文学艺术总同盟朝鲜文学艺术总同盟(조선문학예술총동맹),简称文艺总,是朝鲜最大的艺术组织。现任委员长是安东春。朝鲜文学艺术总同盟的前身是成立于1946年3月25日的朝鲜艺术总同盟,后来该组
  • 六福客栈 (电影)《六福客栈》(英语:)是二十世纪福斯于1958年出品的一部电影,根据第二次世界大战时在中国传教的英国女传教士艾伟德的真实故事改编而成。此片由曾获奥斯卡最佳导演奖的Mark Robso
  • 吴文度吴文度(1441年-1510年),字宪之,福建承宣布政使司泉州府晋江县(今福建省泉州市)人,应天府江宁县籍,明朝政治人物,成化壬辰进士,正德初年,官至南京户部尚书。成化元年(1465年)应天乡试举人,成