Jury稳定性准则

✍ dations ◷ 2025-11-18 13:35:50 #稳定性理论

Jury稳定性准则(Jury stability criterion)是在信号处理及控制理论中,判断线性离散系统稳定性的方式,是利用分析特征多项式来进行分析。Jury稳定性准则是劳斯–赫尔维茨稳定性判据的离散时间版本。Jury稳定性判据要求系统的极点都要位在以原点为圆心的单位圆内,劳斯–赫尔维茨稳定性判据要求系统的极点在复数平面的左半边。Jury稳定性准则得名自伊拉克裔美籍工程师殷巴尔·易卜拉欣·朱瑞(英语:Eliahu Ibraham Jury)。

系统的特征多项式如下

用以下的方式来建构表格:

因此,第一行是多项式的系数,从常数项次而高次项次排列,第二行则是第一行的反序。

第三行是将第一行减去第二行乘以 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,而第四行是第三行的反序(并且维持最后一个元素为零)。

表格继续往下延伸,直到有一行只有一个非零元素为止。

针对头两行相减的系数是 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,针对第三行及第四行相减的系数就变成 b n 1 b 0 {\displaystyle {\frac {b_{n-1}}{b_{0}}}} ,因此所得的多项式会少一项。

a 0 > 0 {\displaystyle {a_{0}}>0} ,而 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...都是正值,表示系统的根都在单位圆内,系统稳定。只要上述有任何一个小于零,表示系统至少有一个根都在单位圆外,系统不稳定。

若Jury稳定性准则发现 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...中有一个为负值,即可结束测试,因为至少有一个根都在单位圆外,系统不稳定。

此方式用电脑的动态阵列很容易实现。也可以确认系统所有的根(实根或是复数根)都在单位圆内。向量v是原多项式的系数,从最高项次到常数项。

        /* vvd is the jury array */        vvd.push_back(v); // Store the first row        reverse(v.begin(),v.end());        vvd.push_back(v); // Store the second row        for(i=2;;i+=2)        {            v.clear();            double mult=vvd.size()-1]/vvd; // This is an/a0 as mentioned in the article.            for( j=0;j<vvd.size()-1;j++) // Take the last 2 rows and compute the next row                   v.push_back(vvd - vvd*mult);            vvd.push_back(v);            reverse(v.begin(),v.end()); // reverse the next row            vvd.push_back(v);            if(v.size()==1) break;         }         // Check is done using         for(i=0;i<vvd.size();i+=2)         {              if(vvd<=0) break;         }         if(i==vvd.size())              "All roots lie inside unit disc "         else              "no"

相关条目

  • 林纳德–奇帕特判据:由劳斯–赫尔维茨稳定性判据产生的另一个连续系统稳定性判据。

参考资料

  1. ^ Discrete-time control systems (2nd ed.), pg. 185. Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©1995 ISBN 0-13-034281-5

若需要更多细节,可以参考以下连结:

进阶参考资料:

有关实现的资料:

相关

  • 妇科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学妇科学是一门研究女性在非孕期生殖系
  • 都市生态学都市生态学是应用自然生态学的理论分别理解人类社会的一种科学。芝加哥学派也常用都市生态学研究都市问题。其内容包括生态、组织、竞争、进化、入侵、均衡等自然定律。都市
  • 四国四国(日语:四国/しこく Shikoku */?)是日本四大本土岛屿之一,位于九州东北、本州西南方,居于日本国土的西部偏中处。全岛面积18,297.78平方公里,是日本本土四岛中面积最小的,在世
  • 苏联攻势波罗的海 – 黑海 – 北极 – (跳马 – PQ-17船团 – 仙境)1941年巴巴罗萨 – (比亚韦斯托克及明斯克 – 斯摩棱斯克 – 乌曼 – 列宁格勒 – 第一次基辅 – 塞瓦斯托波尔围
  • 孔雀帝国孔雀王朝(梵语:मौर्य राजवंश,约前324年至约前185年),即古印度摩揭陀国的孔雀王朝扩张所形成的帝国,阿育王为当时主要推广佛教的领导者,在历史上具有一席之地。前325年,马
  • 德尔·哈里斯德尔玛·威廉·哈里斯(英语:Delmer William Harris,1937年6月18日-),外号银狐,生于印第安那州的帕兰菲尔德(Plainfield),美国NBA联盟前主教练。他的早年教练生涯从执教印第安那州里奇
  • 奉子成婚奉子成婚即先孕后婚,又称先有后婚,亦有“先上车后补票”之谑称,指的是男女双方因婚前性行为而使女方意外怀孕,之后因为责任、面子或让子女能在完整家庭成长以及文化等因素而成立
  • 周期蛋白依赖性激酶周期蛋白依赖性激酶或周期素依赖性激酶(英语:Cyclin-dependent kinases,CDKs)是一个蛋白质激酶家族,因其在细胞周期中的调控作用而首次被发现,该蛋白家族也涉及转录调控、mRNA加工
  • 307<< 300301302303304305306307308309>> << 300310320330340350360370380390>><< 0100200300400500600700800900>>307(三百零七)是、自然数、整数、介于306和308的数。小行星307
  • 庚醇庚醇可以指下列同分异构体:庚-1-醇庚-2-醇庚-3-醇庚-4-醇