Jury稳定性准则

✍ dations ◷ 2025-04-02 08:38:00 #稳定性理论

Jury稳定性准则(Jury stability criterion)是在信号处理及控制理论中,判断线性离散系统稳定性的方式,是利用分析特征多项式来进行分析。Jury稳定性准则是劳斯–赫尔维茨稳定性判据的离散时间版本。Jury稳定性判据要求系统的极点都要位在以原点为圆心的单位圆内,劳斯–赫尔维茨稳定性判据要求系统的极点在复数平面的左半边。Jury稳定性准则得名自伊拉克裔美籍工程师殷巴尔·易卜拉欣·朱瑞(英语:Eliahu Ibraham Jury)。

系统的特征多项式如下

用以下的方式来建构表格:

因此,第一行是多项式的系数,从常数项次而高次项次排列,第二行则是第一行的反序。

第三行是将第一行减去第二行乘以 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,而第四行是第三行的反序(并且维持最后一个元素为零)。

表格继续往下延伸,直到有一行只有一个非零元素为止。

针对头两行相减的系数是 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,针对第三行及第四行相减的系数就变成 b n 1 b 0 {\displaystyle {\frac {b_{n-1}}{b_{0}}}} ,因此所得的多项式会少一项。

a 0 > 0 {\displaystyle {a_{0}}>0} ,而 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...都是正值,表示系统的根都在单位圆内,系统稳定。只要上述有任何一个小于零,表示系统至少有一个根都在单位圆外,系统不稳定。

若Jury稳定性准则发现 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...中有一个为负值,即可结束测试,因为至少有一个根都在单位圆外,系统不稳定。

此方式用电脑的动态阵列很容易实现。也可以确认系统所有的根(实根或是复数根)都在单位圆内。向量v是原多项式的系数,从最高项次到常数项。

        /* vvd is the jury array */        vvd.push_back(v); // Store the first row        reverse(v.begin(),v.end());        vvd.push_back(v); // Store the second row        for(i=2;;i+=2)        {            v.clear();            double mult=vvd.size()-1]/vvd; // This is an/a0 as mentioned in the article.            for( j=0;j<vvd.size()-1;j++) // Take the last 2 rows and compute the next row                   v.push_back(vvd - vvd*mult);            vvd.push_back(v);            reverse(v.begin(),v.end()); // reverse the next row            vvd.push_back(v);            if(v.size()==1) break;         }         // Check is done using         for(i=0;i<vvd.size();i+=2)         {              if(vvd<=0) break;         }         if(i==vvd.size())              "All roots lie inside unit disc "         else              "no"

相关条目

  • 林纳德–奇帕特判据:由劳斯–赫尔维茨稳定性判据产生的另一个连续系统稳定性判据。

参考资料

  1. ^ Discrete-time control systems (2nd ed.), pg. 185. Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©1995 ISBN 0-13-034281-5

若需要更多细节,可以参考以下连结:

进阶参考资料:

有关实现的资料:

相关

  • 松果体松果体(又叫做松果腺、脑上体)是一个位于脊椎动物脑中的小内分泌腺体。人体最小的器官。它负责制造褪黑素,一种会对醒睡模式与(季节性)昼夜节律功能的调节产生影响的激素其形状像
  • 雪暴雪暴(英语:Blizzard),又称暴风雪、飞雪,-5℃以下大降水量天气的统称,且伴有强烈的冷空气气流。雪暴的形成类似于与暴风雨相似。在冬天,当云中的温度变得很低时,使云中的小水滴结冻。
  • 核子医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学核医学是医学和医学影像学(医学成像)的
  • 保罗·奥斯特Paul Queen Paul Benjamin保罗·奥斯特(英语:Paul Auster,1947年2月3日-),生于新泽西州纽华克,美籍犹太人小说家、诗人、翻译家也是电影编剧和导演,曾和导演王颖合导电影《烟》,奥斯
  • 詹姆斯·A·加菲尔德詹姆斯·艾布拉姆·加菲尔德(英语:James Abram Garfield,1831年11月19日-1881年9月19日),美国政治家,第20任美国总统,共和党人。加菲尔德曾九任众议院议员(1863年-1880年),其后当上参议
  • 高雄清真寺高雄清真寺,其原址为1949年兴建于三民区林森路的清真寺,后于苓雅区复址。该清真寺是伊斯兰教(回教)在台湾的第二座清真寺,为台湾十所清真寺之一,也是台湾南部三个礼拜场所之一。19
  • 沃尔森学院剑桥大学沃尔森学院(英语:Wolfson College, Cambridge) 是剑桥大学的一个成员学院。沃尔森学院为本科生和研究生提供住宿,同时也负责安排本科生录取,并为大学的研究人员提供资金
  • 高密高密市位于中国山东省东部,今属潍坊市,1987年由高密县撤县设市改制而来,古称“夷维”,又名“凤城”。位于胶东半岛中部,坐落于胶莱平原之上。总面积为1526平方公里,下辖3个街道、7
  • 恩斯特·卡西尔恩斯特·卡西尔(Ernst Cassirer,1874年7月28日-1945年4月13日),德国哲学家,生于西里西亚布雷斯劳(今波兰弗罗茨瓦夫),于1939年成为瑞典公民,死于美国纽约。受学于马尔堡的新康德主义传
  • 阿德里安·伯德阿德里安·彼得·伯德爵士(英语:Sir Adrian Peter Bird,CBE FRS FRSE,1947年7月3日-),英国遗传学家,爱丁堡大学布坎南遗传学讲座教授及惠康细胞生物学研究中心研究员。伯德的研究集