Jury稳定性准则

✍ dations ◷ 2025-08-13 23:11:13 #稳定性理论

Jury稳定性准则(Jury stability criterion)是在信号处理及控制理论中,判断线性离散系统稳定性的方式,是利用分析特征多项式来进行分析。Jury稳定性准则是劳斯–赫尔维茨稳定性判据的离散时间版本。Jury稳定性判据要求系统的极点都要位在以原点为圆心的单位圆内,劳斯–赫尔维茨稳定性判据要求系统的极点在复数平面的左半边。Jury稳定性准则得名自伊拉克裔美籍工程师殷巴尔·易卜拉欣·朱瑞(英语:Eliahu Ibraham Jury)。

系统的特征多项式如下

用以下的方式来建构表格:

因此,第一行是多项式的系数,从常数项次而高次项次排列,第二行则是第一行的反序。

第三行是将第一行减去第二行乘以 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,而第四行是第三行的反序(并且维持最后一个元素为零)。

表格继续往下延伸,直到有一行只有一个非零元素为止。

针对头两行相减的系数是 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,针对第三行及第四行相减的系数就变成 b n 1 b 0 {\displaystyle {\frac {b_{n-1}}{b_{0}}}} ,因此所得的多项式会少一项。

a 0 > 0 {\displaystyle {a_{0}}>0} ,而 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...都是正值,表示系统的根都在单位圆内,系统稳定。只要上述有任何一个小于零,表示系统至少有一个根都在单位圆外,系统不稳定。

若Jury稳定性准则发现 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...中有一个为负值,即可结束测试,因为至少有一个根都在单位圆外,系统不稳定。

此方式用电脑的动态阵列很容易实现。也可以确认系统所有的根(实根或是复数根)都在单位圆内。向量v是原多项式的系数,从最高项次到常数项。

        /* vvd is the jury array */        vvd.push_back(v); // Store the first row        reverse(v.begin(),v.end());        vvd.push_back(v); // Store the second row        for(i=2;;i+=2)        {            v.clear();            double mult=vvd.size()-1]/vvd; // This is an/a0 as mentioned in the article.            for( j=0;j<vvd.size()-1;j++) // Take the last 2 rows and compute the next row                   v.push_back(vvd - vvd*mult);            vvd.push_back(v);            reverse(v.begin(),v.end()); // reverse the next row            vvd.push_back(v);            if(v.size()==1) break;         }         // Check is done using         for(i=0;i<vvd.size();i+=2)         {              if(vvd<=0) break;         }         if(i==vvd.size())              "All roots lie inside unit disc "         else              "no"

相关条目

  • 林纳德–奇帕特判据:由劳斯–赫尔维茨稳定性判据产生的另一个连续系统稳定性判据。

参考资料

  1. ^ Discrete-time control systems (2nd ed.), pg. 185. Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©1995 ISBN 0-13-034281-5

若需要更多细节,可以参考以下连结:

进阶参考资料:

有关实现的资料:

相关

  • 美味牛肝菌美味牛肝菌(学名:Boletus edulis)是一种可食用的蘑菇,也称大腿蘑、网纹牛肝菌,属于真菌类。美味牛肝菌的子实体为肉质,伞盖褐色,直径最大可达25厘米,1千克重,菌盖厚,下面有许多小孔,类
  • 腋窝腋窝(Axilla)是一个解剖构造,又称腋下、胳肢窝。腋窝位于肩关节下方,是描述躯干与手臂连接并接触的部位,腋窝内具有许多血管及神经经过,并具有许多汗腺。在人体中,腋臭最常发生于腋
  • 尿苷酸单磷酸尿苷(英语:Uridine monophosphate,或译一磷酸尿苷、尿苷单磷酸、尿苷酸,英文缩写UMP)。是一种存在于RNA中的核苷酸。也是一种由磷酸与核苷尿苷所组成的酯类。包含磷酸官能
  • 石氏星表原名《天文》,西汉以后被尊称为《石氏星经》。由战国时期魏国天文学家、占星家石申所著,共八卷,原著已失传。《史记·天官书》、《汉书·天文志》中引有《石氏星经》中有关五星
  • 劳厄马克斯·冯·劳厄(德语:Max von Laue,1879年10月9日-1960年4月24日),德国物理学家,因发现晶体中X射线的衍射现象而获得1914年诺贝尔物理学奖。1879年10月9日,马克斯·劳厄出生于科布
  • 2度视场星系红移巡天2度视场星系红移巡天 (Two-degree-Field Galaxy Redshift Survey),或2dF、2dFGRS是天文学在1997年至2002年4月11日之间使用AAO天文台的3.9米AAO望远镜进行的红移巡天观测。史
  • 球面球面 (英语:sphere)是三维空间中完全圆形的几何物体,它是圆球的表面(类似于在二维空间中,“圆 ”包围着“圆盘”那样)。就像在二维空间中的圆的定义一样,球面在数学上定义为三维空间
  • 支部支部,为汉字索引中的部首之一,康熙字典214个部首中的第六十五个(四划的则为第五个)。在中文中,支部归于四划部首。支部通常是从左、右方均可为部字。且无其他部首可用者将部首归
  • 尤莉·古德胡斯尤莉·古德胡斯(德语:Juli Gudehus,1968年-)是一位德国女性图像设计师。最早她出版了《Genesis》一书,并逐渐出名。她采用新的图像语言来诠释人们已熟悉的商标和标记。1993年,《Die
  • 1990年国际足联世界杯1990年国际足联世界杯,于1990年在意大利举行。决赛中,西德以 1–0 战胜了阿根廷,第三次捧起了世界杯奖杯。夺得三次冠军和三次亚军的西德队成为当时世界杯比赛中最成功的球队,直