Jury稳定性准则

✍ dations ◷ 2025-11-19 15:32:14 #稳定性理论

Jury稳定性准则(Jury stability criterion)是在信号处理及控制理论中,判断线性离散系统稳定性的方式,是利用分析特征多项式来进行分析。Jury稳定性准则是劳斯–赫尔维茨稳定性判据的离散时间版本。Jury稳定性判据要求系统的极点都要位在以原点为圆心的单位圆内,劳斯–赫尔维茨稳定性判据要求系统的极点在复数平面的左半边。Jury稳定性准则得名自伊拉克裔美籍工程师殷巴尔·易卜拉欣·朱瑞(英语:Eliahu Ibraham Jury)。

系统的特征多项式如下

用以下的方式来建构表格:

因此,第一行是多项式的系数,从常数项次而高次项次排列,第二行则是第一行的反序。

第三行是将第一行减去第二行乘以 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,而第四行是第三行的反序(并且维持最后一个元素为零)。

表格继续往下延伸,直到有一行只有一个非零元素为止。

针对头两行相减的系数是 a n a 0 {\displaystyle {\frac {a_{n}}{a_{0}}}} ,针对第三行及第四行相减的系数就变成 b n 1 b 0 {\displaystyle {\frac {b_{n-1}}{b_{0}}}} ,因此所得的多项式会少一项。

a 0 > 0 {\displaystyle {a_{0}}>0} ,而 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...都是正值,表示系统的根都在单位圆内,系统稳定。只要上述有任何一个小于零,表示系统至少有一个根都在单位圆外,系统不稳定。

若Jury稳定性准则发现 a 0 {\displaystyle {a_{0}}} , b 0 {\displaystyle {b_{0}}} , c 0 {\displaystyle {c_{0}}} ...中有一个为负值,即可结束测试,因为至少有一个根都在单位圆外,系统不稳定。

此方式用电脑的动态阵列很容易实现。也可以确认系统所有的根(实根或是复数根)都在单位圆内。向量v是原多项式的系数,从最高项次到常数项。

        /* vvd is the jury array */        vvd.push_back(v); // Store the first row        reverse(v.begin(),v.end());        vvd.push_back(v); // Store the second row        for(i=2;;i+=2)        {            v.clear();            double mult=vvd.size()-1]/vvd; // This is an/a0 as mentioned in the article.            for( j=0;j<vvd.size()-1;j++) // Take the last 2 rows and compute the next row                   v.push_back(vvd - vvd*mult);            vvd.push_back(v);            reverse(v.begin(),v.end()); // reverse the next row            vvd.push_back(v);            if(v.size()==1) break;         }         // Check is done using         for(i=0;i<vvd.size();i+=2)         {              if(vvd<=0) break;         }         if(i==vvd.size())              "All roots lie inside unit disc "         else              "no"

相关条目

  • 林纳德–奇帕特判据:由劳斯–赫尔维茨稳定性判据产生的另一个连续系统稳定性判据。

参考资料

  1. ^ Discrete-time control systems (2nd ed.), pg. 185. Prentice-Hall, Inc. Upper Saddle River, NJ, USA ©1995 ISBN 0-13-034281-5

若需要更多细节,可以参考以下连结:

进阶参考资料:

有关实现的资料:

相关

  • 鸠鸽科鸠鸽科(学名:Columbidae)在2014年的鸟类全基因组测序分类系统中是鸟纲鸽形目中的一个科,一般称为鸠或者鸽。有许多种类,其中有47属,其下共有大约320个物种。常常被称呼为白鸽或鸽
  • 防火墙防火墙(英语:Firewall)在计算机科学领域中是一个架设在互联网与企业内网之间的信息安全系统,根据企业预定的策略来监控往来的传输。防火墙可能是一台专属的网络设备或是运行于主
  • ɑ开后不圆唇元音是母音的一种,用于一些语言当中,国际音标以⟨ɑ⟩代表此音,而X-SAMPA音标则以⟨A⟩代表此音。⟨ɑ⟩这符号又称作“手写体a”,因为它缺乏“印刷体a”(就是⟨a⟩)顶
  • 875年重要事件及趋势逝世重要人物
  • 离氨酸赖氨酸(英语:Lysine,简称为Lys或者K)是一种α-氨基酸。它的化学式表示为:HO2CCH(NH2)(CH2)4NH2。赖氨酸是一种人体必需的氨基酸。赖氨酸的遗传密码是AAA和AAG。赖氨酸与精氨酸,组
  • 绅士
  • 木醋液木醋液(Pyroligneous acid),又称为焦木酸,是通过破坏蒸馏(Destructive distillation)木材和其他植物所产生的深色液体。木醋液的主要组分是乙酸、丙酮和甲醇。曾被用作乙酸的商业
  • Craigslist克雷格列表(英语:Craigslist)是一个网上大型免费分类广告网站,但在某些城市的征才广告需付费,这也是这网络公司的主要收入。这项服务于1995年由Craig Newmark于美国旧金山湾区创
  • 昆津病毒昆津病毒(英语:Kunjin virus,缩写作 KUNV)是一种人畜共患病毒,归为黄病毒科黄病毒属(英语:Flavivirus),是一种西尼罗河病毒亚型,只分布在大洋洲。昆津病毒最早是在1960年从澳大利亚环
  • 冕狐猴冕狐猴(学名 )是冕狐猴属的典型物种,目前已经濒危。产于马达加斯加东部的雨林,是最大的狐猴之一。成年冕狐猴的体长约为105厘米,其中一半为尾长。素食,以当地的树和干旱刺林植物为