Burrows-Wheeler变换

✍ dations ◷ 2025-08-02 21:09:43 #无损压缩算法,变换

Burrows–Wheeler Transform(简称BWT,也称作块排序压缩),是一个被应用在数据压缩技术(如bzip2)中的算法。该算法于1994年被Michael Burrows(英语:Michael Burrows)和David Wheeler(英语:David Wheeler)在位于加利福尼亚州帕洛阿尔托的DEC系统研究中心(英语:DEC Systems Research Center)发明。它的基础是之前Wheeler在1983年发明的一种没有公开的转换方法。

当一个字符串用该算法转换时,算法只改变这个字符串中字符的顺序而并不改变其字符。如果原字符串有几个出现多次的子串,那么转换过的字符串上就会有一些连续重复的字符,这对压缩是很有用的。该方法能使得基于处理字符串中连续重复字符的技术(如MTF变换和游程编码)的编码更容易被压缩。

举个例子:

该算法的输出因为有更多的重复字符而更容易被压缩了。

算法将输入字符串的所有循环字符串按照字典序排序,并以排序后字符串形成的矩阵的最后一列为其输出。

banana
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b
b a n a n a $
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a
a n n b $ a a

Burrows–Wheeler变换的还原过程

  • 基于上述的BWT变换过程,以字符串“banana”为例,我们得到了变换结果“annb$aa”。其还原过程见以下过程:
  1. 1 基于原字符串矩阵的最后一列为“annb$aa”,我们进行该列进行排序,得到“annb$aa”,并将其作为还原矩阵的第一列
Burrows–Wheeler 还原过程 1
输入转移排序组合
- - - - - - a
- - - - - - n
- - - - - - n
- - - - - - b
- - - - - - $
- - - - - - a
- - - - - - a
a - - - - - -
n - - - - - -
n - - - - - -
b - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -
a - - - - - -
b - - - - - -
n - - - - - -
n - - - - - -
$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a
  1. 2 经过1.1的转移、排序和组合,我们得到了7对邻接字符串:<a$> <na> <na> <ba> <$b> <an> <an>,将这7对邻接字符串进行排序后,得到<$b> <a$> <an> <an> <ba> <na> <na>,由此,我们得到了还原矩阵的第二列“b$nnaaa”
Burrows–Wheeler 还原过程 2
输入转移排序组合
$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a
a $ - - - - -
n a - - - - -
n a - - - - -
b a - - - - -
$ b - - - - -
a n - - - - -
a n - - - - -
$ b - - - - -
a $ - - - - -
a n - - - - -
a n - - - - -
b a - - - - -
n a - - - - -
n a - - - - -
$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a
  1. 3 经过1.2的转移、排序和组合,我们得到了7对邻接字符串:<a$b> <na$> <nan> <ban> <$ba> <ana> <ana>,将这7对邻接字符串进行排序后,得到<$ba> <a$b> <ana> <ana> <ban> <na$> <nan>,由此,我们得到了还原矩阵的第三列“abaan$n”
Burrows–Wheeler 还原过程 3
输入转移排序组合
$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a
a $ b - - - -
n a $ - - - -
n a n - - - -
b a n - - - -
$ b a - - - -
a n a - - - -
a n a - - - -
$ b a - - - -
a $ b - - - -
a n a - - - -
a n a - - - -
b a n - - - -
n a $ - - - -
n a n - - - -
$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a
  1. 4 经过1.3的转移、排序和组合,我们得到了7对邻接字符串:<a$ba> <na$b> <nana> <bana> <$ban> <ana$> <anan>,将这7对邻接字符串进行排序后,得到<$ban> < a$ba > <ana$> < anan > < bana > < na$b > < nana >,由此,我们得到了还原矩阵的第四列“na$naba”
Burrows–Wheeler 还原过程 4
输入转移排序组合
$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a
a $ b a - - -
n a $ b - - -
n a n a - - -
b a n a - - -
$ b a n - - -
a n a $ - - -
a n a n - - -
$ b a n - - -
a $ b a - - -
a n a $ - - -
a n a n - - -
b a n a - - -
n a $ b - - -
n a n a - - -
$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a
  1. 5 经过1.4的转移、排序和组合,我们得到了7对邻接字符串:<a$ban> <na$ba> <nana$> <banan> <$bana> <ana$b> <anana>,将这7对邻接字符串进行排序后,得到<$bana> <a$ban> < ana$b > <anana> <banan> <na$ba> <nana$>,由此,我们得到了还原矩阵的第五列“anbana$”
Burrows–Wheeler 还原过程 5
输入转移排序组合
$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a
a $ b a n - -
n a $ b a - -
n a n a $ - -
b a n a n - -
$ b a n a - -
a n a $ b - -
a n a n a - -
$ b a n a - -
a $ b a n - -
a n a $ b - -
a n a n a - -
b a n a n - -
n a $ b a - -
n a n a $ - -
$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a
  1. 6 经过1.5的转移、排序和组合,我们得到了7对邻接字符串:<a$bana> <na$ban> <nana$b> <banaan> <$banan> <ana$ba> <anana$>,将这7对邻接字符串进行排序后,得到<$banan> <a$bana> < ana$ba> <anana$> <banana> <na$ban> <nana$b>,由此,我们得到了还原矩阵的第六列“naa$anb”。
Burrows–Wheeler 还原过程 5
输入转移排序组合
$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a
a $ b a n a -
n a $ b a n -
n a n a $ b -
b a n a n a -
$ b a n a n -
a n a $ b a -
a n a n a $ -
$ b a n a n -
a $ b a n a -
a n a $ b a -
a n a n a $ -
b a n a n a -
n a $ b a n -
n a n a $ b -
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

经过六次排序转移与组合,还原出了原有的字符串即“$banana”。

def bwt(s):    """对字符串进行Burrows-Wheeler变换 不使用唯一字符('EOF')做标记 返回索引值列表"""    #创建所有循环字符串    table =  + s for i in range(len(s))]    #获取排序后的结果    table_sorted = table    table_sorted.sort()    #获取已排序表每个字符串在未排序表中对应字符串的下一个字符串在已排序表中的索引值    indexlist =     for t in table_sorted:        index1 = table.index(t)        index1 = index1+1 if index1 < len(s)-1 else 0        index2 = table_sorted.index(table)        indexlist.append(index2)    #取排序后结果的最后一列作为结果字符串    r = ''.join( for row in table_sorted])    return r, indexlistdef ibwt(r,indexlist):    """对字符串进行反Burrows-Wheeler变换 有索引值的反变换比使用唯一标记的反变换简单很多"""    s=''    x = indexlist    for _ in r:        s = s + r        x = indexlist    return s

python实现(基于末尾添加唯一字符方式)

通过在末尾添加唯一字符(不与输入字串中任何字符相同)后再进行变换,可以不需要传递索引值列表,不过逆变换的时候要做更多计算。

下面的伪代码提供了一个逆过程的朴素实现(输入字符串s为原过程之输出):

相关

  • 伯克氏菌目伯克氏菌目(学名:Burkholderiales)是变形菌门β-变形菌纲的一个目,跟其他变形菌一样,都是革兰氏阴性菌。本目包含了许多致病性病原菌如伯克氏菌属(Burkholderia)和博德氏菌属(Bordet
  • 过敏原过敏原(英语:allergen,又称为变应原、过敏物、致敏原、致敏物)是指能引起过敏的物质。严格地说,过敏原是一种能促进在特应性个体发生I型超敏反应的非寄生抗原。尘螨的排泄物、花
  • 自然哲学自然哲学是现代自然科学的奠基,主要是思考人对于的自然界的哲学问题--包括自然界和人的相互关系、人造自然和原生自然的关系、自然界的最基本规律等。这当中不少理论,都奠下了
  • 印度尼西亚2019冠状病毒病印度尼西亚疫情,介绍在2019新型冠状病毒疫情中,在印度尼西亚发生的情况。截至24日,目前共有新增确诊个案107例,累积确诊病例升至686例。 印度尼西亚政府发言人尤
  • 美国东部时间北美东部时区(North American Eastern Time Zone),或称美国东部时间(The Eastern Time Zone,ET),主要包括北美东海岸和南美西海岸,其标准时间(EST)为UTC-5,夏令时间(EDT)为UTC-4。此外,以
  • 阿苏萨阿苏萨(英文:Azusa),是美国加利福尼亚州洛杉矶县下属的一座城市。建市于1898年12月29日,面积 大约为9.66平方英里 (25平方公里)。根据2010年美国人口普查,该市有人口46,361人。
  • 康涅狄格太阳康乃狄克太阳(英语:Connecticut Sun)是一支位于美国康乃狄克州Uncasville的WNBA(国家女子篮球联盟)篮球队。前身为成立于1999年奥兰多奇迹,2003年迁到康乃狄克州Uncasville后改为
  • 约瑟夫斯·尼古劳斯·劳伦蒂约瑟夫斯·尼古劳斯·劳伦蒂(德语:Josephus Nicolaus Laurenti,1735年12月4日-1805年2月17日)是意大利裔奥地利博物学家、动物学家和医生。劳伦蒂在1768年发表了关于爬虫两栖类动
  • 利夫奥克 (佛罗里达州)利夫奥克(英语:Live Oak),是美国佛罗里达州下属的一座城市。建立于1878年。面积约 为29.5平方公里(约合11.4平方英里)。根据2010年美国人口普查,该市有人口6,850人。论人口在本州排
  • 黄其晟黄其晟(?-17世纪),字仲晔,福建泉州府同安县人,明朝、南明政治人物。黄其晟是万历四十三年(1615年)乙卯科举人,天启二年(1622年)成进士,曾经担任内阁中书、巡视东城监察御史,出为江西抚州府