Burrows-Wheeler变换

✍ dations ◷ 2025-02-24 09:19:30 #无损压缩算法,变换

Burrows–Wheeler Transform(简称BWT,也称作块排序压缩),是一个被应用在数据压缩技术(如bzip2)中的算法。该算法于1994年被Michael Burrows(英语:Michael Burrows)和David Wheeler(英语:David Wheeler)在位于加利福尼亚州帕洛阿尔托的DEC系统研究中心(英语:DEC Systems Research Center)发明。它的基础是之前Wheeler在1983年发明的一种没有公开的转换方法。

当一个字符串用该算法转换时,算法只改变这个字符串中字符的顺序而并不改变其字符。如果原字符串有几个出现多次的子串,那么转换过的字符串上就会有一些连续重复的字符,这对压缩是很有用的。该方法能使得基于处理字符串中连续重复字符的技术(如MTF变换和游程编码)的编码更容易被压缩。

举个例子:

该算法的输出因为有更多的重复字符而更容易被压缩了。

算法将输入字符串的所有循环字符串按照字典序排序,并以排序后字符串形成的矩阵的最后一列为其输出。

banana
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b
b a n a n a $
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a
a n n b $ a a

Burrows–Wheeler变换的还原过程

  • 基于上述的BWT变换过程,以字符串“banana”为例,我们得到了变换结果“annb$aa”。其还原过程见以下过程:
  1. 1 基于原字符串矩阵的最后一列为“annb$aa”,我们进行该列进行排序,得到“annb$aa”,并将其作为还原矩阵的第一列
Burrows–Wheeler 还原过程 1
输入转移排序组合
- - - - - - a
- - - - - - n
- - - - - - n
- - - - - - b
- - - - - - $
- - - - - - a
- - - - - - a
a - - - - - -
n - - - - - -
n - - - - - -
b - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -
a - - - - - -
b - - - - - -
n - - - - - -
n - - - - - -
$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a
  1. 2 经过1.1的转移、排序和组合,我们得到了7对邻接字符串:<a$> <na> <na> <ba> <$b> <an> <an>,将这7对邻接字符串进行排序后,得到<$b> <a$> <an> <an> <ba> <na> <na>,由此,我们得到了还原矩阵的第二列“b$nnaaa”
Burrows–Wheeler 还原过程 2
输入转移排序组合
$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a
a $ - - - - -
n a - - - - -
n a - - - - -
b a - - - - -
$ b - - - - -
a n - - - - -
a n - - - - -
$ b - - - - -
a $ - - - - -
a n - - - - -
a n - - - - -
b a - - - - -
n a - - - - -
n a - - - - -
$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a
  1. 3 经过1.2的转移、排序和组合,我们得到了7对邻接字符串:<a$b> <na$> <nan> <ban> <$ba> <ana> <ana>,将这7对邻接字符串进行排序后,得到<$ba> <a$b> <ana> <ana> <ban> <na$> <nan>,由此,我们得到了还原矩阵的第三列“abaan$n”
Burrows–Wheeler 还原过程 3
输入转移排序组合
$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a
a $ b - - - -
n a $ - - - -
n a n - - - -
b a n - - - -
$ b a - - - -
a n a - - - -
a n a - - - -
$ b a - - - -
a $ b - - - -
a n a - - - -
a n a - - - -
b a n - - - -
n a $ - - - -
n a n - - - -
$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a
  1. 4 经过1.3的转移、排序和组合,我们得到了7对邻接字符串:<a$ba> <na$b> <nana> <bana> <$ban> <ana$> <anan>,将这7对邻接字符串进行排序后,得到<$ban> < a$ba > <ana$> < anan > < bana > < na$b > < nana >,由此,我们得到了还原矩阵的第四列“na$naba”
Burrows–Wheeler 还原过程 4
输入转移排序组合
$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a
a $ b a - - -
n a $ b - - -
n a n a - - -
b a n a - - -
$ b a n - - -
a n a $ - - -
a n a n - - -
$ b a n - - -
a $ b a - - -
a n a $ - - -
a n a n - - -
b a n a - - -
n a $ b - - -
n a n a - - -
$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a
  1. 5 经过1.4的转移、排序和组合,我们得到了7对邻接字符串:<a$ban> <na$ba> <nana$> <banan> <$bana> <ana$b> <anana>,将这7对邻接字符串进行排序后,得到<$bana> <a$ban> < ana$b > <anana> <banan> <na$ba> <nana$>,由此,我们得到了还原矩阵的第五列“anbana$”
Burrows–Wheeler 还原过程 5
输入转移排序组合
$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a
a $ b a n - -
n a $ b a - -
n a n a $ - -
b a n a n - -
$ b a n a - -
a n a $ b - -
a n a n a - -
$ b a n a - -
a $ b a n - -
a n a $ b - -
a n a n a - -
b a n a n - -
n a $ b a - -
n a n a $ - -
$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a
  1. 6 经过1.5的转移、排序和组合,我们得到了7对邻接字符串:<a$bana> <na$ban> <nana$b> <banaan> <$banan> <ana$ba> <anana$>,将这7对邻接字符串进行排序后,得到<$banan> <a$bana> < ana$ba> <anana$> <banana> <na$ban> <nana$b>,由此,我们得到了还原矩阵的第六列“naa$anb”。
Burrows–Wheeler 还原过程 5
输入转移排序组合
$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a
a $ b a n a -
n a $ b a n -
n a n a $ b -
b a n a n a -
$ b a n a n -
a n a $ b a -
a n a n a $ -
$ b a n a n -
a $ b a n a -
a n a $ b a -
a n a n a $ -
b a n a n a -
n a $ b a n -
n a n a $ b -
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

经过六次排序转移与组合,还原出了原有的字符串即“$banana”。

def bwt(s):    """对字符串进行Burrows-Wheeler变换 不使用唯一字符('EOF')做标记 返回索引值列表"""    #创建所有循环字符串    table =  + s for i in range(len(s))]    #获取排序后的结果    table_sorted = table    table_sorted.sort()    #获取已排序表每个字符串在未排序表中对应字符串的下一个字符串在已排序表中的索引值    indexlist =     for t in table_sorted:        index1 = table.index(t)        index1 = index1+1 if index1 < len(s)-1 else 0        index2 = table_sorted.index(table)        indexlist.append(index2)    #取排序后结果的最后一列作为结果字符串    r = ''.join( for row in table_sorted])    return r, indexlistdef ibwt(r,indexlist):    """对字符串进行反Burrows-Wheeler变换 有索引值的反变换比使用唯一标记的反变换简单很多"""    s=''    x = indexlist    for _ in r:        s = s + r        x = indexlist    return s

python实现(基于末尾添加唯一字符方式)

通过在末尾添加唯一字符(不与输入字串中任何字符相同)后再进行变换,可以不需要传递索引值列表,不过逆变换的时候要做更多计算。

下面的伪代码提供了一个逆过程的朴素实现(输入字符串s为原过程之输出):

相关

  • 意大利文化意大利文化是指意大利半岛与周围地区形成的文化。从古代到16世纪为止,意大利都是西方文化的核心,也是伊特拉斯坎文明、古罗马、罗马天主教、人文主义和文艺复兴运动的起源。在
  • 巴罗洛宫巴罗洛宫(西班牙语:Palacio Barolo)是阿根廷布宜诺斯艾利斯的一座22层办公楼,该市的地标之一,位于五月大道1370号。意大利建筑师Mario Palanti受雇主路易斯·巴罗洛之托,设计了这
  • 台湾金融保险机构列表以下列出中华民国(台湾)的各种从事金融服务的机构。依照相关法规,中华民国的金融机构分为以下类型:此外,还可依法人登记地分为3种类型:本国金控人寿类非金控人寿类外商本国外商※
  • 吴祖禹吴祖禹(1920年5月3日-2006年12月17日),浙江鄞县人,中华民国外交官,知名法学家吴经熊之子。吴祖禹毕业于上海东吴大学法学院,抗日战争时期曾任教于重庆中央测量学校,其后还曾任南京高
  • 185大厦185大厦是一栋55层楼(英语:storey),高度200米,位于德国法兰克福Gallus区(英语:Gallus (Frankfurt am Main))的摩天大楼。与同城另一栋建筑物主塔并列法兰克福第四高的建筑物(英语:List
  • 天主教卡利博教区天主教卡利博教区 (拉丁语:Dioecesis Kalibensis、他加禄语:Diyosesis ng Kalibo)是菲律宾一个罗马天主教教区,属天主教卡皮斯总教区。辖区包括阿克兰省。2006年有教友454,903人
  • 玛丽·希金斯·克拉克玛丽·希金斯·克拉克(英语:Mary Higgins Clark,1927年12月24日-2020年1月31日),全名为玛丽·特雷莎·埃莉诺·希金斯·克拉克·康希尼(Mary Theresa Eleanor Higgins Clark Conhee
  • 苏州基督教新教基督教新教传入苏州最早可溯源于19世纪下半叶。1858年,美南监理会传教士从上海首次访问苏州。1860年,太平天国军攻占苏州以后,美国传教士高帝丕、花兰芷、赫威尔来苏,受到良好的
  • 托马斯·亨德里克·伊尔韦斯托马斯·亨德里克·伊尔韦斯(爱沙尼亚语:Toomas Hendrik Ilves,爱沙尼亚语发音:,1953年12月26日-)是爱沙尼亚第四任总统。他以前曾是外交官和记者。在九十年代领导社会民主党,曾当选
  • 岩黄树属岩黄树属(学名:)是茜草科下的一个属,为亚灌木或多年生草本植物。该属共有约17种,分布在亚洲和大洋洲。