Burrows-Wheeler变换

✍ dations ◷ 2025-11-05 00:46:13 #无损压缩算法,变换

Burrows–Wheeler Transform(简称BWT,也称作块排序压缩),是一个被应用在数据压缩技术(如bzip2)中的算法。该算法于1994年被Michael Burrows(英语:Michael Burrows)和David Wheeler(英语:David Wheeler)在位于加利福尼亚州帕洛阿尔托的DEC系统研究中心(英语:DEC Systems Research Center)发明。它的基础是之前Wheeler在1983年发明的一种没有公开的转换方法。

当一个字符串用该算法转换时,算法只改变这个字符串中字符的顺序而并不改变其字符。如果原字符串有几个出现多次的子串,那么转换过的字符串上就会有一些连续重复的字符,这对压缩是很有用的。该方法能使得基于处理字符串中连续重复字符的技术(如MTF变换和游程编码)的编码更容易被压缩。

举个例子:

该算法的输出因为有更多的重复字符而更容易被压缩了。

算法将输入字符串的所有循环字符串按照字典序排序,并以排序后字符串形成的矩阵的最后一列为其输出。

banana
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b
b a n a n a $
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a
a n n b $ a a

Burrows–Wheeler变换的还原过程

  • 基于上述的BWT变换过程,以字符串“banana”为例,我们得到了变换结果“annb$aa”。其还原过程见以下过程:
  1. 1 基于原字符串矩阵的最后一列为“annb$aa”,我们进行该列进行排序,得到“annb$aa”,并将其作为还原矩阵的第一列
Burrows–Wheeler 还原过程 1
输入转移排序组合
- - - - - - a
- - - - - - n
- - - - - - n
- - - - - - b
- - - - - - $
- - - - - - a
- - - - - - a
a - - - - - -
n - - - - - -
n - - - - - -
b - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -
$ - - - - - -
a - - - - - -
a - - - - - -
a - - - - - -
b - - - - - -
n - - - - - -
n - - - - - -
$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a
  1. 2 经过1.1的转移、排序和组合,我们得到了7对邻接字符串:<a$> <na> <na> <ba> <$b> <an> <an>,将这7对邻接字符串进行排序后,得到<$b> <a$> <an> <an> <ba> <na> <na>,由此,我们得到了还原矩阵的第二列“b$nnaaa”
Burrows–Wheeler 还原过程 2
输入转移排序组合
$ - - - - - a
a - - - - - n
a - - - - - n
a - - - - - b
b - - - - - $
n - - - - - a
n - - - - - a
a $ - - - - -
n a - - - - -
n a - - - - -
b a - - - - -
$ b - - - - -
a n - - - - -
a n - - - - -
$ b - - - - -
a $ - - - - -
a n - - - - -
a n - - - - -
b a - - - - -
n a - - - - -
n a - - - - -
$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a
  1. 3 经过1.2的转移、排序和组合,我们得到了7对邻接字符串:<a$b> <na$> <nan> <ban> <$ba> <ana> <ana>,将这7对邻接字符串进行排序后,得到<$ba> <a$b> <ana> <ana> <ban> <na$> <nan>,由此,我们得到了还原矩阵的第三列“abaan$n”
Burrows–Wheeler 还原过程 3
输入转移排序组合
$ b - - - - a
a $ - - - - n
a n - - - - n
a n - - - - b
b a - - - - $
n a - - - - a
n a - - - - a
a $ b - - - -
n a $ - - - -
n a n - - - -
b a n - - - -
$ b a - - - -
a n a - - - -
a n a - - - -
$ b a - - - -
a $ b - - - -
a n a - - - -
a n a - - - -
b a n - - - -
n a $ - - - -
n a n - - - -
$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a
  1. 4 经过1.3的转移、排序和组合,我们得到了7对邻接字符串:<a$ba> <na$b> <nana> <bana> <$ban> <ana$> <anan>,将这7对邻接字符串进行排序后,得到<$ban> < a$ba > <ana$> < anan > < bana > < na$b > < nana >,由此,我们得到了还原矩阵的第四列“na$naba”
Burrows–Wheeler 还原过程 4
输入转移排序组合
$ b a - - - a
a $ b - - - n
a n a - - - n
a n a - - - b
b a n - - - $
n a $ - - - a
n a n - - - a
a $ b a - - -
n a $ b - - -
n a n a - - -
b a n a - - -
$ b a n - - -
a n a $ - - -
a n a n - - -
$ b a n - - -
a $ b a - - -
a n a $ - - -
a n a n - - -
b a n a - - -
n a $ b - - -
n a n a - - -
$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a
  1. 5 经过1.4的转移、排序和组合,我们得到了7对邻接字符串:<a$ban> <na$ba> <nana$> <banan> <$bana> <ana$b> <anana>,将这7对邻接字符串进行排序后,得到<$bana> <a$ban> < ana$b > <anana> <banan> <na$ba> <nana$>,由此,我们得到了还原矩阵的第五列“anbana$”
Burrows–Wheeler 还原过程 5
输入转移排序组合
$ b a n - - a
a $ b a - - n
a n a $ - - n
a n a n - - b
b a n a - - $
n a $ b - - a
n a n a - - a
a $ b a n - -
n a $ b a - -
n a n a $ - -
b a n a n - -
$ b a n a - -
a n a $ b - -
a n a n a - -
$ b a n a - -
a $ b a n - -
a n a $ b - -
a n a n a - -
b a n a n - -
n a $ b a - -
n a n a $ - -
$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a
  1. 6 经过1.5的转移、排序和组合,我们得到了7对邻接字符串:<a$bana> <na$ban> <nana$b> <banaan> <$banan> <ana$ba> <anana$>,将这7对邻接字符串进行排序后,得到<$banan> <a$bana> < ana$ba> <anana$> <banana> <na$ban> <nana$b>,由此,我们得到了还原矩阵的第六列“naa$anb”。
Burrows–Wheeler 还原过程 5
输入转移排序组合
$ b a n a - a
a $ b a n - n
a n a $ b - n
a n a n a - b
b a n a n - $
n a $ b a - a
n a n a $ - a
a $ b a n a -
n a $ b a n -
n a n a $ b -
b a n a n a -
$ b a n a n -
a n a $ b a -
a n a n a $ -
$ b a n a n -
a $ b a n a -
a n a $ b a -
a n a n a $ -
b a n a n a -
n a $ b a n -
n a n a $ b -
$ b a n a n a
a $ b a n a n
a n a $ b a n
a n a n a $ b
b a n a n a $
n a $ b a n a
n a n a $ b a

经过六次排序转移与组合,还原出了原有的字符串即“$banana”。

def bwt(s):    """对字符串进行Burrows-Wheeler变换 不使用唯一字符('EOF')做标记 返回索引值列表"""    #创建所有循环字符串    table =  + s for i in range(len(s))]    #获取排序后的结果    table_sorted = table    table_sorted.sort()    #获取已排序表每个字符串在未排序表中对应字符串的下一个字符串在已排序表中的索引值    indexlist =     for t in table_sorted:        index1 = table.index(t)        index1 = index1+1 if index1 < len(s)-1 else 0        index2 = table_sorted.index(table)        indexlist.append(index2)    #取排序后结果的最后一列作为结果字符串    r = ''.join( for row in table_sorted])    return r, indexlistdef ibwt(r,indexlist):    """对字符串进行反Burrows-Wheeler变换 有索引值的反变换比使用唯一标记的反变换简单很多"""    s=''    x = indexlist    for _ in r:        s = s + r        x = indexlist    return s

python实现(基于末尾添加唯一字符方式)

通过在末尾添加唯一字符(不与输入字串中任何字符相同)后再进行变换,可以不需要传递索引值列表,不过逆变换的时候要做更多计算。

下面的伪代码提供了一个逆过程的朴素实现(输入字符串s为原过程之输出):

相关

  • 硫磺3s2 3p42, 8, 6蒸气压第一:999.6 kJ·mol−1 第二:2252 kJ·mol−1 第三:3357 kJ·mol−1 (主条目:硫的同位素硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。
  • 链激酶结构 / ECOD链激酶(英语:Streptokinase),又名溶栓酶,是由β-溶血性链球菌产生的一种酶。其能与血浆纤溶酶原结合成复合物,使其暴露活性部位,催化纤溶酶原转化为纤溶酶,使血栓溶解。
  • 哥本哈根歌剧院哥本哈根歌剧院(Copenhagen Opera House)是丹麦的国家歌剧院,位于哥本哈根市中心的霍尔曼,这座歌剧院也是世界上最现代化的歌剧院之一。哥本哈根歌剧院的修建费用超过5亿美元,也
  • 性腺肿瘤伴有环形小管性腺肿瘤伴有环形小管(英语:Sex cord tumour with annular tubules, SCTAT),是一种罕见卵巢肿瘤,属于性腺间质肿瘤下的一类。性腺肿瘤伴有环形小管,会与黑斑息肉病或其他分散的疾
  • 气候工程地理工程学 ( Geoengineering )是运用工程手段解决现时地球问题的一门新兴学科。第一类是将空气中的二氧化碳脱除并将其储存或转化为燃料(学名为二氧化碳脱除),如,将铁化合物倒
  • 布雷根茨布雷根茨(德语:Bregenz)是奥地利西部的一座城市,福拉尔贝格州首府,位于欧洲第三大淡水湖博登湖东岸,普芬德山山脚,是莱茵河谷与德国阿尔卑斯山山麓的交汇处。它最出名的活动,是每年
  • 汉坦病毒汉坦病毒(Hantavirus),又译汉坦病毒或汉滩江病毒,是本雅病毒目的一种病毒,其引发的病症称为汉他病/肾综合征出血热/流行性出血热,为一种经由老鼠传染给人类的致命传染病,被列为生物
  • 扁头豹猫(P. planiceps)扁头猫(学名:Prionailurus planiceps),是一种体型较小的野外猫科动物,分布在泰国南部、马来西亚、文莱及印尼的森林。它们因失去栖息地及污染而濒危。只有两只扁头猫受到饲养,都是
  • 丁夏祥丁夏祥(朝鲜语:정하상/丁夏祥 ,1795年-1839年9月22日),洗礼名保禄(Paulus),是朝鲜王朝时期的一位士族、天主教徒。本贯押海丁氏。他是丁若锺与柳召史(朝鲜语:유소사)所生的儿子,也是丁情
  • 芬尼芬尼(德语:pfennig,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gentium