数学上,浸入是微分流形之间的可微映射,其导数处处是单射。确切而言, : → 是浸入,若在中每一点,
都是单射。(表示在点处的切空间。另一个等价说法是是浸入,若的秩是常数,且等于的维数:
以上只要求的导数为单射,但映射未必是单射。
一个与浸入相关的概念是嵌入。光滑嵌入是一个单射浸入 : → 而同时为拓扑嵌入,使得与其在中的像微分同胚。浸入正是局部嵌入,即对中每一点都有一个的邻域 ⊂ ,使得 : → 是嵌入。相反地,局部嵌入都是浸入。
若是紧致的,则单射浸入是一个嵌入;若不是紧致,则未必成立。这两者的关系就如同连续双射之于同胚。