刘维尔定理 (哈密顿力学)

✍ dations ◷ 2025-12-09 06:38:41 #基本物理概念,哈密顿力学,数学定理,统计力学

在物理学中,刘维尔定理(Liouville's theorem)是经典统计力学与哈密顿力学中的关键定理。该定理断言相空间的分布函数沿着系统的轨迹是常数——即给定一个系统点,在相空间游历过程中,该点邻近的系统点的密度关于时间是常数。换一种表述,就是共轭相空间里,一个哈密顿系统的相体积不可压缩。

它以法国数学家约瑟夫·刘维尔命名。这也是辛拓扑与遍历论中的有关数学结果。

刘维尔方程描述了相空间分布函数(尽管数学中准确术语是测度,物理学家一般称为分布)的时间演变。考虑一个动力系统具有正则坐标 q i {\displaystyle q_{i}} -维勒贝格测度)。该定理说这个光滑测度在哈密顿流下不变。更一般地,我们可以描述一个光滑测度在一个流下不变的充分必要条件。哈密顿力学情形便是一个推论。

在辛几何方面,此定理断言辛结构(2-形式,由 Δ p i {\displaystyle \Delta p_{i}} Δ q i {\displaystyle \Delta q_{i}} 的楔积之和组成)的 d 次幂在其哈密顿演化下的李导数为零。辛结构的 d 次幂就是相空间中上面所说的测度。

事实上,辛结构自身(不仅是 d 次幂)也不变。因此,在这种情形下,辛结构也称为庞加莱不变量。从而关于庞加莱不变量的定理是刘维尔定理的推广。

还可以进一步推广。在不变哈密顿形式化 页面存档备份,存于互联网档案馆的框架下,不变相空间中的辛结构的存在性定理是关于庞加莱不变量定理的一个深入推广。

刘维尔方程在量子力学中的类比描述了一个混合态的时间演化。正则量子化得出这个定理的一个量子力学版本。这个过程利用哈密顿力学描述经典系统,经常用于产生经典系统的量子类比。经典变量重新解释为量子算子,而泊松括号用交换子代替。在这种情形,所得方程是

这里 ρ 是密度矩阵。

将其应用到一个可观测量的期望值,相应的方程由埃伦费斯特定理给出,具有形式

这里 A {\displaystyle A} 是一个可观测量。注意符号不同,这由算子的稳定性与状态时间相关之假设得出。

2005年,有论文发现当x与p不是辛形式的时候,尤其演化中存在几何相位,流体密度将可能被压缩。

相关

  • 牛奶过敏牛奶过敏(英语:milk allergy)指免疫系统对于牛奶中的蛋白质产生过敏反应,主要症状是胃肠道、皮肤和呼吸的过敏反应。牛奶过敏属于食物过敏,但乳糖不耐症是缺乏需要消化牛奶中的乳
  • 玉帝玉皇上帝,通称玉皇大天尊,简称玉皇、玉帝,俗称玉皇大帝、天公,宋代尊称之为昊天玄穹玉皇上帝。玉皇上帝源自中国自古以来信仰的昊天上帝。中国人自从原始社会开始就崇敬“天”,最
  • 鬼影Banjong Pisanthanakun, Sopon Sukdapisit, Parkpoom Wongpoom《鬼影》( 泰语:ชัตเตอร์ กดติดวิญญาณ)是2004年的泰国恐怖剧情电影,由Banjong Pisanthanakun
  • 陈晓东陈晓东可以指:
  • 前4世纪前400年至前301年的这一段期间被称为前4世纪。
  • 描写文描写文(英语:description / descriptive writing)是指描写物件或人物的文章。直接描写的作用是从描写对象的正面进行描写,把眼前景物如实写来。间接描写是通过其他人物或事件的
  • 阎仲宇阎仲宇(1441年-1512年),字参甫,陕西凤翔府陇州(今陕西陇县)人,明朝政治人物。早年出身州学生,后进陕西乡试第三名。成化十一年(1475年),参加乙未科会试,得贡士第二百六十五名。殿试登进士
  • 四端点测量技术四端点测量技术,又称为四端测试法,开尔文测量法,是一种电子线路中的阻抗测量法,主要用于电阻阻值的精确测量。根据欧姆定律, R = V
  • 胡尚礼胡尚礼(1915年-2003年),男,山西解县人,中华人民共和国军事人物,中国人民解放军少将,曾任武汉军区政治部副主任,河南省军区政治委员,河南省革命委员会副主任,第四、五届全国人大代表。
  • 日鲈亚目日鲈亚目(学名:Centrarchoidei)又名太阳鱼亚目,是辐鳍鱼纲日鲈目的一个亚目,包含了包括太阳鱼科在内的4个科。本亚目的4个科如下:䱵亚目是本亚目的姐妹群,其次为真鲈亚目,与其它日鲈