莫比乌斯变换

✍ dations ◷ 2025-04-02 13:00:18 #复分析,共形几何,射影几何,李群

在几何学里, 莫比乌斯变换是一类从黎曼球面映射到自身的函数。用扩展复平面上的复数表示的话,其形式为:

其中 , , , , 为满足 − ≠ 0的(扩展)复数。

莫比乌斯变换也可以被分解为以下几个变换:把平面射影到球面上,把球体进行旋转、位移等任何变换,然后把它射影回平面上。莫比乌斯变换是以数学家奥古斯特·费迪南德·莫比乌斯的名字命名的,它也被叫做单应变换(homographic transformation)或分式线性变换(linear fractional transformation)。

莫比乌斯变换是定义在扩充复平面上的(扩充复平面是指在普通的复平面加入无穷远点构成的集合)

扩充复平面可以看做是一个球面,它的另一个名称就是黎曼球面。每个莫比乌斯变换都是从黎曼球面到它自身的一一对应的共形变换。事实上,所有这样的变换都是莫比乌斯变换。

所有莫比乌斯变换的集合在函数复合作用下构成一个群,称为“莫比乌斯群”,记作 M ( C ^ ) {\displaystyle {\mathcal {M}}({\widehat {\mathbb {C} }})} 、、、是任何满足 − ≠ 0 的复数(当 = 的时候这个表达式退化成一个常数,通常约定常数函数不是莫比乌斯变换)。当≠0 时,定义

这样便将莫比乌斯变换扩展到整个黎曼球面上。

如果=0,那么定义

这样定义后莫比乌斯变换就成为了黎曼球面上的一个一一对应的全纯函数。

由于对莫比乌斯变换的每一个系数乘上一个相同的系数 λ {\displaystyle \lambda } − ≠ 0 的条件改成 − = 1. 这样的定义下得到的莫比乌斯变换可以说是“约简后”的莫比乌斯变换:22。

莫比乌斯变换的实质与反演密切相关。实际上,一个形如

的莫比乌斯变换可以分解成四个变换:51:

这四个变换的复合就是莫比乌斯变换:

在这种分解之下,我们可以清楚地看出莫比乌斯变换的不少基本性质。首先,由于以上分解中的每个变换都是可逆的(它们的逆变换也十分清楚),因此可以容易地看出,莫比乌斯变换的逆变换也是一个莫比乌斯变换,而且其表达式可以具体计算。具体来说,设变换函数 g 1 , g 2 , g 3 , g 4 {\displaystyle g_{1},g_{2},g_{3},g_{4}} 的逆变换就是:

由于莫比乌斯变换可以分解为平移、反演、位似与旋转变换,因此能够保持所有反演变换的性质。一个基本的例子是保角性:由于平移、反演、位似与旋转变换都保持角度不变,因此两个复数(或向量)之间的幅角差(夹角)在经过莫比乌斯变换后不变。

此外,一个广义圆经过莫比乌斯变换后,仍会映射到一个广义圆。广义圆是指黎曼球面上的圆,包括普通的圆形和带无穷远点的直线(可以认为是一个半径无限大的圆)。这也是反演保持广义圆的结果。当然莫比乌斯变换并不是将圆映射到圆,将直线映射到直线,经过映射后直线可能变成圆,圆也可能变成直线。

莫比乌斯变换也可以保持复数的复比不变。设有四个两两不同的复数 z 1 , z 2 , z 3 , z 4 {\displaystyle z_{1},z_{2},z_{3},z_{4}} ,对应扩充复平面上四个不同的点,它们经过莫比乌斯变换后变成 w 1 , w 2 , w 3 , w 4 {\displaystyle w_{1},w_{2},w_{3},w_{4}} 四点,那么复比:

z 1 , z 2 , z 3 , z 4 {\displaystyle z_{1},z_{2},z_{3},z_{4}} 中有一个或多个是无穷大时,复比就定义为相应逼近的极限。比如说当四个复数是 z 1 , z 2 , z 3 , {\displaystyle z_{1},z_{2},z_{3},\infty } 时,复比就是:

给定平面上三个不同点 z 1 , z 2 , z 3 {\displaystyle z_{1},z_{2},z_{3}} ,存在着唯一的一个莫比乌斯变换 f {\displaystyle f} ,使得 f ( z 1 ) , f ( z 2 ) , f ( z 3 ) {\displaystyle f(z_{1}),f(z_{2}),f(z_{3})} 分别等于 0 , 1 , {\displaystyle 0,1,\infty } 。这个莫比乌斯变换就是:

而由于对于另外的三个不同点 w 1 , w 2 , w 3 {\displaystyle w_{1},w_{2},w_{3}} ,也唯一存在一个莫比乌斯变换 g {\displaystyle g} ,使得 g ( z 1 ) , g ( z 2 ) , g ( z 3 ) {\displaystyle g(z_{1}),g(z_{2}),g(z_{3})} 分别等于 0 , 1 , {\displaystyle 0,1,\infty } 。因此,对于任意一组出发点 z 1 , z 2 , z 3 {\displaystyle z_{1},z_{2},z_{3}} ,任意一组到达点 w 1 , w 2 , w 3 {\displaystyle w_{1},w_{2},w_{3}} ,都唯一存在一个莫比乌斯变换,将 z 1 , z 2 , z 3 {\displaystyle z_{1},z_{2},z_{3}} 分别映射到点 w 1 , w 2 , w 3 {\displaystyle w_{1},w_{2},w_{3}} 。具体地说,这个变换就是 g ( 1 ) f {\displaystyle g^{(-1)}\circ f} :59-60。作为推论,如果一个莫比乌斯变换有三个不动点,那么它是恒等变换。

莫比乌斯变换构成的莫比乌斯群 M ( C ^ ) {\displaystyle {\mathcal {M}}({\widehat {\mathbb {C} }})} 和由二阶复可逆矩阵所构成的二阶复系数一般线性群 G L 2 ( C ) {\displaystyle {\mathcal {GL}}_{2}(\mathbb {C} )} 有同态的关系。事实上,考虑一个二阶的可逆矩阵: A = ( a 1 a 2 a 3 a 4 ) {\displaystyle A={\begin{pmatrix}a_{1}&a_{2}\\a_{3}&a_{4}\end{pmatrix}}} ,其中 a 1 a 4 a 2 a 3 0 {\displaystyle a_{1}a_{4}-a_{2}a_{3}\neq 0} ,那么由矩阵的系数 a 1 , a 2 , a 3 , a 4 {\displaystyle a_{1},a_{2},a_{3},a_{4}} 可以写出一个莫比乌斯变换:

而如果考虑映射:

则经过计算可以知道, g A B = g A g B {\displaystyle g_{AB}=g_{A}\circ g_{B}} ,也就是说:

因此 φ {\displaystyle \varphi } 是一个群同态:53。

注意到对所有的复数 λ {\displaystyle \lambda } λ a 1 z + λ a 2 λ a 3 z + λ a 4 = a 1 z + a 2 a 3 z + a 4 {\displaystyle {\frac {\lambda a_{1}z+\lambda a_{2}}{\lambda a_{3}z+\lambda a_{4}}}={\frac {a_{1}z+a_{2}}{a_{3}z+a_{4}}}} ,所以变换 g ( λ A ) = g A {\displaystyle g_{(\lambda A)}=g_{A}} 。因此,可以将起始空间由一般线性群缩小到特殊线性群 S L 2 ( C ) {\displaystyle {\mathcal {SL}}_{2}(\mathbb {C} )} 。而由于有且仅有单位矩阵 I d 2 {\displaystyle \mathbf {Id} _{2}} 和负单位矩阵 I d 2 {\displaystyle -\mathbf {Id} _{2}} 在群同态 φ {\displaystyle \varphi } 下对应的莫比乌斯变换是恒等变换,所以 φ {\displaystyle \varphi } 的核是 { I d 2 , I d 2 } {\displaystyle \left\{\mathbf {Id} _{2},-\mathbf {Id} _{2}\right\}} 。根据群同态基本定理,有以下群同构关系:23:

其中 P S L 2 ( C ) {\displaystyle \mathbb {P} {\mathcal {SL}}_{2}(\mathbb {C} )} 为复平面上的射影特殊线性群。

相关

  • 甲基丙二酸单酰辅酶A甲基丙二酸单酰辅酶A (或简称甲基丙二酰辅酶A)是由辅酶A与甲基丙二酸通过硫酯键结合的重要代谢中间产物,参与许多生物合成与分解反应。丙酰辅酶A由丙酰辅酶A羧化酶羧化为甲基丙
  • 台北红点设计博物馆台北红点设计博物馆(Red Dot Design Museum Taipei),位于台湾台北市信义区松山文化创意园区,为德国红点设计大奖博物馆。台北市政府环境保护局在2015年发现台北文化体育园区施工
  • 水利工程水利工程()是为了控制、利用和保护地表及地下的水资源与环境而修建的各项工程建设的总称。土木工程中着重于水流体的自然运动与人工输送及利用的一门分支。该工程领域与桥梁、
  • 2015年怀卡托羽毛球国际赛2015年怀卡托羽毛球国际赛为2015年度的怀卡托羽毛球国际赛,属世界羽联未来系列赛级别。本届赛事于2015年4月17日至4月19日在新西兰怀卡托的 Eastlink Badminton Stadium 举行
  • Flower Bud《Flower Bud》,是韩国女子演唱团体GFRIEND的第二张迷你专辑,为“校园系列三部曲”的第二部曲,以《오늘부터우리는》(Me Gustas Tu)为主打歌。《오늘부터우리는》(Me Gustas Tu
  • 珊瑚岛 (西沙群岛)珊瑚岛是西沙群岛中的一个岛屿,现由中华人民共和国政府实际控制,行政上划归海南省三沙市管辖。越南称之为黄沙岛(越南语:Đảo Hoàng Sa/.mw-parser-output .han-nom{font-famil
  • Goff-Gratch方程式Goff-Gratch方程式可以在给定温度的情况下用来确定水的饱和蒸汽压。另一个类似的方程是Arden Buck方程式(英语:Arden Buck equation)。Goff-Gratch方程式是以它的两个作者(Goff
  • 巴西狂欢节巴西狂欢节(葡萄牙语:Carnaval do Brasil)是一年一度的巴西节日,它在每年大斋首日前一个星期五下午至大斋首日的中午之间举行,标志着复活节前40天的大斋期的开始。巴西狂欢节受到
  • 美丽时光《美丽时光》(英语:The Best Of Times)是一部于2002年上映的台湾电影,由张作骥所导演,由范植伟、高盟杰主演。该电影获选为第59届威尼斯影展正式竞赛片,并于第39届金马奖获得最大
  • 安纳伯格庄园安纳伯格庄园(英语:Sunnylands 英语原名:Annenberg Estate),又译为“阳光庄园”,是美国的一个著名庄园,位于加州兰乔米拉市。庄园占地200英亩(0.81平方公里),由非营利组织安纳伯格信