级数

✍ dations ◷ 2025-08-18 03:16:40 #级数,无穷,高等数学

在数学中,一个有穷或无穷的序列 u 1 , u 2 , u 3 , u 4 {\displaystyle u_{1},u_{2},u_{3},u_{4}\ldots } 。这时可以定义级数 u n {\displaystyle \sum u_{n}} -级数是指通项为 1 n p {\displaystyle {\frac {1}{n^{p}}}} ,当 p > 1 {\displaystyle p>1} 有界,这时 u n {\displaystyle \sum u_{n}} 收敛, lim n S n = s {\displaystyle \lim _{n\to \infty }S_{n}=s} ,要么部分和数列趋于正无穷,这时级数发散。

u n {\displaystyle \sum u_{n}} v n {\displaystyle \sum v_{n}} 是正项级数。

比如,我们已知级数: 1 n 2 {\displaystyle \sum {1 \over n^{2}}} 收敛,则级数: | sin n | n 2 {\displaystyle \sum {|\sin n| \over n^{2}}} 也收敛,因为对任意的 n {\displaystyle n} sin n 1 {\displaystyle \sin n\leq 1}

比较判别法的特点是要已知若干级数的敛散性。一般来说,我们可以选择比较简单的级数: U p = 1 n p {\displaystyle U_{p}=\sum {1 \over n^{p}}} 作为“标准级数”,依此判断其他函数的敛散性。需要知道的是当 p 1 {\displaystyle p\leq 1} 时, U p {\displaystyle U_{p}} 发散,当 p > 1 {\displaystyle p>1} 时, U p {\displaystyle U_{p}} 收敛。

在比较判别法中,如果取几何级数为比较的标准级数,可得:

这个判别法也称为比值判别法或比值审敛法。

这个判别法也称为根值判别法或根值审敛法'。

具有以下形式的级数

其中所有的 a n {\displaystyle a_{n}} 非负,被称作交错级数。

在上述的级数 n = 0 ( 1 ) n a n {\displaystyle \sum _{n=0}^{\infty }(-1)^{n}a_{n}\!} 中,如果当 n {\displaystyle n} 趋于无穷时, 数列 a n {\displaystyle a_{n}} 的极限存在且等于 0,并且每个 a n {\displaystyle a_{n}} 小于 a n 1 {\displaystyle a_{n-1}} (即, 数列 a n {\displaystyle a_{n}} 是单调递减的),那么级数收敛。

对于通项为任意实数的无穷级数 u n {\displaystyle \sum u_{n}} ,将级数 | u n | {\displaystyle \sum |u_{n}|} 称为它的绝对值级数。可以证明,如果 | u n | {\displaystyle \sum |u_{n}|} 收敛,那么 u n {\displaystyle \sum u_{n}} 也收敛,这时称 u n {\displaystyle \sum u_{n}} 绝对收敛。如果 u n {\displaystyle \sum u_{n}} 收敛,但是 | u n | {\displaystyle \sum |u_{n}|} 发散,则称 u n {\displaystyle \sum u_{n}} 条件收敛。比如说,级数 sin n n 2 {\displaystyle \sum {\sin n \over n^{2}}} 绝对收敛,因为前面已经证明 | sin n | n 2 {\displaystyle \sum {|\sin n| \over n^{2}}} 收敛。而级数 ( 1 ) n n {\displaystyle \sum {(-1)^{n} \over n}} 是条件收敛的。它自身收敛到 ln 1 2 {\displaystyle \ln {1 \over 2}} ,但是它的绝对值级数 1 n {\displaystyle \sum {1 \over n}} 是发散的。

黎曼级数定理说明,如果一个无穷级数 u n {\displaystyle \sum u_{n}} 条件收敛,那么对于任意的实数 x {\displaystyle x} ,存在一个正整数到正整数的双射 σ {\displaystyle \sigma } ,使得级数 u σ ( n ) {\displaystyle \sum u_{\sigma (n)}} 收敛到 x {\displaystyle x} 。对于正负无穷大,上述双射也存在。

( u n ( x ) ) n 0 {\displaystyle (u_{n}(x))_{n\geq 0}} 为定义在区间 I {\displaystyle {\mathcal {I}}} 上的函数列,则表达式: u 1 ( x ) + u 2 ( x ) + + u n ( x ) + {\displaystyle u_{1}(x)+u_{2}(x)+\cdots +u_{n}(x)+\cdots } 称为函数项级数,简记为 u n ( x ) {\displaystyle \sum u_{n}(x)} 。对函数项级数的主要研究是:

对区间 I {\displaystyle {\mathcal {I}}} 上的每个 x 0 {\displaystyle x_{0}} ,级数 u n ( x 0 ) {\displaystyle \sum u_{n}(x_{0})} 是常数项级数。若 u n ( x 0 ) {\displaystyle \sum u_{n}(x_{0})} 收敛,则称 x 0 {\displaystyle x_{0}} u n ( x ) {\displaystyle \sum u_{n}(x)} 的一个收敛点, u n ( x ) {\displaystyle \sum u_{n}(x)} 全体收敛点的集合称为它的收敛域。若 u n ( x 0 ) {\displaystyle \sum u_{n}(x_{0})} 发散,则称 x 0 {\displaystyle x_{0}} u n ( x ) {\displaystyle \sum u_{n}(x)} 的一个发散点, u n ( x ) {\displaystyle \sum u_{n}(x)} 全体发散点的集合称为它的发散域。 u n ( x ) {\displaystyle \sum u_{n}(x)} 在其收敛域的每一点上都有定义,因此定义了一个函数,称为 u n ( x ) {\displaystyle \sum u_{n}(x)} 的和函数,记为 S ( x ) {\displaystyle S(x)} 。按照定义, S ( x 0 ) = lim n S n ( x 0 ) {\displaystyle S(x_{0})=\lim _{n\to \infty }S_{n}(x_{0})} ,其中 S n ( x 0 ) = u 1 ( x 0 ) + u 2 ( x 0 ) + + u n ( x 0 ) {\displaystyle S_{n}(x_{0})=u_{1}(x_{0})+u_{2}(x_{0})+\cdots +u_{n}(x_{0})} 为函数项级数在 x 0 {\displaystyle x_{0}} 点上的部分和。

函数项级数的取值可以在它的收敛域上用和函数定义,但和函数的性质可能会和级数的每一项不同。比如说,当函数项级数 u n ( x ) {\displaystyle \sum u_{n}(x)} 中的每一项 u n ( x ) {\displaystyle u_{n}(x)} 在收敛域上都是连续函数时,和函数未必会是连续函数。以下是一个例子:

然而,如果函数项级数能够满足某些更严格的条件的话,可以证明级数的和函数的规则性将会等于每一项函数的规则性,这就是所谓的一致收敛性质。和函数列的一致收敛性质一样,函数项级数 u n ( x ) {\displaystyle \sum u_{n}(x)} 在某个区间 I {\displaystyle {\mathcal {I}}} 内(关于某个范数 {\displaystyle \left\|\cdot \right\|} )一致收敛的定义是它的部分和函数 S n {\displaystyle S_{n}} 在区间 I {\displaystyle {\mathcal {I}}} 上一致收敛到和函数 S {\displaystyle S}

可以证明:

如果级数 u n ( x ) {\displaystyle \sum u_{n}(x)} 在区间 I {\displaystyle {\mathcal {I}}} 内一致收敛,并且每个 u n ( x ) {\displaystyle u_{n}(x)} 都是连续函数,那么和函数 S {\displaystyle S} 在区间 I {\displaystyle {\mathcal {I}}} 上也是连续函数。

进一步的,如果导函数级数的每一项都是 C p {\displaystyle {\mathcal {C}}^{p}} 函数( p {\displaystyle p}

相关

  • 戴尔亨利·哈利特·戴尔爵士,OM,GBE,FRS(英语:Sir Henry Hallett Dale,1875年6月9日-1968年7月23日),英国神经科学家。他研究乙酰胆碱,发现神经冲动的化学传递,与奥托·勒维一起获得1936年
  • Bksub2/subOsub3/sub三氧化二锫是锫已知的两种氧化物之一,化学式为Bk2O3。它可由二氧化锫在600°C的氢气流中加热还原得到。它是浅棕黄色的固体,属于立方晶系,晶胞参数a=10.880±0.005。它在氯化氢
  • 卡罗琳·赫歇尔罗拉琳·卢克雷拉蒂娅·赫歇尔(德语:Caroline Lucretia Herschel,1750年3月16日-1848年1月9日),出生于德国汉诺威,德国天文学家,威廉·赫歇尔的妹妹。1772年,卡罗琳拉移居英国巴斯与
  • 188线市道188号(五甲-竹田,其中屏东县境内路段称县道188号),是位于中华民国(台湾)高雄市、屏东县两县市之间的东西向市(县)道。西起高雄市凤山区五甲,东至屏东县竹田乡泗州,全长共计20.838公
  • 共轭碱共轭酸碱对(conjugate pairs)根据酸碱质子理论,一分子或离子 X− (以负一价离子为例)的共轭酸是该分子或离子得到一个质子后的产物 HX,而 X− 则为 HX 的共轭碱,X−和 HX 组成一
  • 麻疯树桐油树(学名:Jatropha curcas),又名麻风树、痳疯树、南洋油桐、黄肿树、假白榄等,为大戟科落叶灌木。其发源地在加勒比海的岛上,但葡萄牙商人把它引进了非洲和亚洲各地,现已分布在
  • 雅乐雅乐是儒家六艺之一,雅乐作为“正乐”需雅化或改造各地俗乐,去繁声存骨干以易统一风格来用作周朝宗庙祭献和朝廷的使用。相对于雅乐的正,郑国音乐的“郑声”具有负面价值意义,朱
  • 谦 福谦福(1809年-?), 额尔德特氏, 字光庭, 号六吉, 一号小榆, 蒙古镶黄旗人,清朝官员。道光十四年(1834年)甲午科举人,十五年(1835年)乙未科进士。后任户部主事、詹事府左中允、翰林院侍讲
  • 保加利亚行政区划保加利亚共和国面积110,910平方千米,首府索非亚。保加利亚行政区划包括28个州(括号内为首府):根据地域统计单位命名法(Nomenclature of Territorial Units for Statistics,NUTS),保
  • 2019冠状病毒病毛里塔尼亚疫情2019冠状病毒病毛里塔尼亚疫情,介绍在2019新型冠状病毒疫情中,在毛里塔尼亚发生的情况。2020年3月13日,毛里塔尼亚宣布该国确诊首例新冠肺炎病例,患者乘飞机从欧洲入境。毛里塔