完全星形二十面体

✍ dations ◷ 2025-02-24 11:40:04 #完全星形二十面体

在几何学中,完全星形二十面体(英语:Final stellation of the icosahedron或complete stellation of the icosahedron)、:30–31:65完全二十面体(日语:かんぜんにじゅうめんたい)或针鼹二十面体(英语:Echidnahedron)是一种星形二十面体。它是星形二十面体的最外层,也因为包括星形二十面体的所有胞,因此是“完全”和“最后”的星形二十面体。温尼尔在他的书中列出的种星形多面体模型中,也包含了完全星形二十面体,并给予编号W42。其也收录于哈罗德·斯科特·麦克唐纳·考克斯特的书《五十九种二十面体》中,编号为8。

几何形状上,完全星形二十面体有两种形式,其在外观上无法区别:

关于星形二十面体的研究最早可以追朔到1619年出版的《世界的和谐》中,约翰内斯·开普勒已针对二十面体的星形化体进行了一些研究,当中列出了属于正多面体的大星形十二面体与小星形十二面体。1809年路易斯·庞索(英语:Louis Poinsot)重新发现了开普勒先前发现的星形二十面体并另外发现了两个星形多面体:大二十面体与大十二面体,因此这四个立体现今合称为开普勒-庞索立体。1812年奥古斯丁-路易·柯西进一步列举了星形多面体并证明星形正多面体只有4个。:259而到了1900年马克斯·布吕克纳(英语:Max Brückner),将星形多面体推广到了不限于正多面体的情况,并列出了十种星形二十面体,当中包括了完全星形二十面体。1924年由学者A.H. Wheeler发表的著作中列举的20种星形二十面体(其共列举了22种,但有些互为镜像)中亦包含了完全星形二十面体。1938年,哈罗德·斯科特·麦克唐纳·考克斯特、帕特里克·杜·瓦尔(英语:Patrick du Val)、H·T·夫雷勒(英语:Flather, H. T.)和J·F·皮特里(英语:Petrie, J. F.)在其著作《五十九种二十面体》中为正二十面体的星形化体提供了一个系统性的规则,并列出了59种符合规则的星形二十面体,完全星形二十面体在本书中被称为第八星形二十面体。1974年,温尼尔亦在其著作《多面体模型》中收录、编号并描述了完全星形二十面体,其将完全星形二十面体编号为W42

1995年,完全星形二十面体被收录于Netlib(英语:Netlib)函式库的多面体数据库中,并命名为针鼹二十面体(echidnahedron),其因外型类似于蜷缩成球的针鼹而得名(针鼹是一种全身覆盖着粗糙的毛发和刺的小型哺乳动物,当其遇到危险时会卷成球状保护自己)。关于完全星形二十面体的对偶多面体较少有文献专门探讨,仅有2000年时,英奇博德·盖在其著作中描述了其面的组成,对于其更详细的性质尚未被有效地探讨及解决,亦未被命名。

将正二十面体的原有的面延伸成无穷平面,并由其向外延伸的相交点构成的立体称为正二十面体的星形化体,或简称为星形二十面体。书籍《五十九种二十面体》为正二十面体的星形化体提供了一个系统性的规则,并根据其规则给予了一套表示系统,称为杜瓦表示法。其列举了正二十面体向外延伸后有可能相交出的面,称为星形二十面体的胞。杜瓦表示法主要以星形二十面体所占据的胞来命名。完全星形二十面体正好占据了最外层“h”层的所有胞,因此完全星形二十面体在杜瓦表示法中可以用H来表示。

简单多面体是指这个多面体中的面不会与同一个多面体的另一个面相交的多面体。若完全星形二十面体要成为一个简单多面体,则需要在这多面体中相交的面上放置新的顶点和边,并将原本的九角星面分割成9个三角形面。这样的多面体共有180个面、270条边和92个顶点,且欧拉示性数为2。

其92个顶点分别位于3个同心的球面上。最内层有20个顶点,来自一个正十二面体;中间那层有12顶点,来自一个正二十面体;最外层的60个顶点来自一个不均匀的截角二十面体。这三层的半径比为:

在上述条件下将完全星形二十面体重建成面不会自我相交的三维立体结构后,其边长将变为 a {displaystyle a} a φ {displaystyle avarphi } a φ 2 {displaystyle avarphi ^{2}} a φ 2 2 {displaystyle avarphi ^{2}{sqrt {2}}} (其中 φ {displaystyle varphi } 为黄金比例)。而上述3个分层(内层正十二面体、中层正二十面体、外层不均匀截角二十面体)分别的外接球半径(内层 R 12 {displaystyle R_{12}} 、中层 R 20 {displaystyle R_{20}} 、外层 R 60 {displaystyle R_{60}} )为:

其表面积 S {displaystyle S} 和体积 V {displaystyle V} 为:

当完全星形二十面体作为一个星形多面体时,其是一个面自我相交的非凸多面体,共有20面、90个边和60个顶点。其每个面都是与施莱夫利符号为 {9/4} 的九角星相近的形状。

完全星形二十面体由20个九角星面组成,由于完全星形二十面体的面有跟其他的面相交的性质,因此,会导致面有部分隐没在图形内部,如下图,露在外面的部分已蓝色表示、隐没于形状内部的部分以白色表示,黑线为与其他面的交线。

完全星形二十面体可由其九角星面构造,构造方式为以其对应星状图的中心胞之正三角形建构一个正二十面体,并通过该正二十面体边旋转九角星面构造完全星形二十面体中的一半面数,剩余部分可通过将钱面完成的部分以中心点对称方式来完成整个完全星形二十面体的构造。

完全星形二十面体的对偶多面体由60个面、90条边和20个顶点所组成,其中60个面都是等腰三角形,且每个顶点都是9个等腰三角形的公共顶点。完全星形二十面体的对偶多面体组成的顶点排列方式与正十二面体相同,但顶点间的相连关系与正十二面体不同,因此其可以视为是正二十面体的一种刻面结果。

由于这个立体是完全星形二十面体的对偶多面体,因此原有多面体的面会成为对偶多面体的顶点图,反之亦然,也就是说完全星形二十面体之对偶多面体的顶点图会是九角星,即顶点周围之面的排列方式会依循九角星边的连接方式:

完全星形二十面体的对偶多面体的面由等腰三角形组成,由于其面有跟其他的面相交的性质,因此会导致面有部分隐没在图形内部,如下图,露在外面的部分已蓝色表示、隐没于形状内部的部分以白色表示,黑线为与其他面的交线。

完全星形二十面体的对偶多面体是五角柱七百二十胞体(pentagon-prismatic heptacosicosachoron)的顶点图。

相关

  • 标准模型在粒子物理学里,标准模型(英语:Standard Model,SM)是描述强力、弱力及电磁力这三种基本力及组成所有物质基本粒子的理论,属于量子场论的范畴,并与量子力学及狭义相对论相容。到目前
  • 双br /髁br /亚br /纲见内文昆虫在分类学上属于昆虫纲(学名:Insecta),是世界上最繁盛的动物,已发现超过100万种。其中单鞘翅目(Coleoptera)中所含的种数就比其它所有动物界中的种数还多。昆字原作䖵。昆
  • 陈其学陈其学(1514年-1593年),字宗孟,号行菴,南京宁国府宣城人(今安徽宣州市)人,明朝政治人物。官至南京刑部尚书。卒谥恭靖。山东乡试第三名举人。嘉靖二十三年(1544年)中式甲辰科进士。授行
  • 大同天国大同天国,是指1951年至1953年期间在陕西黄陵县等地,由大同天国世界道首领黄德功为首成立的一个秘密结社政权。1951年,一贯道成员黄德功等人开始进行暴动的前期筹备工作,缝制旗幡
  • 列表构造函数列表构造函数是用来构造列表的基本函数,在大多数 LISP 体系的计算机编程语言中,使用的函数名称是cons。cons构成了存放两个变量与其指针的内存物件,这个物件被称为
  • 独族App《独族App》(韩语:혼족어플,英语:Hon-Life或Solitary Clan App)是韩国JTBC于2019年8月3日开始播放的电视节目,由全炫茂主持,是关于独自一人能做的所有事情的“新概念社群网络观察排
  • 米塔格斯科格尔山坐标:46°30′24″N 13°56′56″E / 46.50667°N 13.94889°E / 46.50667; 13.94889米塔格斯科格尔山(德语:Mittagskogel),是中欧的山峰,位于斯洛文尼亚和奥地利接壤的边境,属于卡
  • 切拉德切拉德(Chelad),是印度西孟加拉邦Barddhaman县的一个城镇。总人口7901(2001年)。该地2001年总人口7901人,其中男性4389人,女性3512人;0—6岁人口973人,其中男501人,女472人;识字率57.13
  • 新闻学研究《新闻学研究》是国立政治大学新闻学系创办的中文学术期刊,1967年5月创刊,每年1、4、7、10月出刊。研究内容甚广,举凡精神疾患在新闻媒体上被报导的方式、乃至于台湾媒体财团化
  • 堡里河堡里河,位于中国广西壮族自治区桂林市永福县东南部,是洛清江左岸支流,发源于永福县堡里乡河东村架桥岭西侧,西北流经板峡水库和堡里乡驻地,在永福县城永福镇南郊的鱼排汇入洛清江