反正弦

✍ dations ◷ 2025-06-29 16:57:05 #数学定理

反正弦(arcsine, arcsin {\displaystyle \arcsin } sin 1 {\displaystyle \sin ^{-1}} )是一种反三角函数。在三角学中,反正弦被定义为一个角度,也就是正弦值的反函数。正弦函数不是一个对射函数(即多个值可能只得到一个值,例如1和所有同界角),故无法有反函数,但你可以限制其定义域,因此,它是单射和满射也是可逆的。按照定义,我们将实数的定义域限制在区间 {\displaystyle \left} 中的正弦函数,在原始的定义中,若输入值不在区间 {\displaystyle } ,是没有意义的,但是三角函数扩充到复数之后,若输入值不在区间 {\displaystyle } ,将传回复数。

反正弦的符号是 arcsin {\displaystyle \arcsin } ,也常常计作 sin 1 {\displaystyle \sin ^{-1}} ,但这样其实是不明确的,因为,可能会和指数混淆,以致于被当成倒数,但是倒数也有自己的写法,例如 sin {\displaystyle \sin } 倒数是 csc {\displaystyle \csc } ,因此不易和 sin 1 {\displaystyle \sin ^{-1}} 混淆。另外在某些电算器的按键或电脑的编程语言中,反正弦会以asin或asn表示。

原始的定义是将正弦函数限制在 {\displaystyle \left} 的反函数,得到如下定义域和值域:

利用自然对数可将定义推广到整个复数集:

他的微分是:

由于对称关系保持负的参数,根据定义的奇函数,存在如下等式: arcsin ( x ) = arcsin x {\displaystyle \arcsin \left(-x\right)=-\arcsin x}

另外,反正弦的和差也可以核定成一个反正弦来表达:

con X = arcsin ( x 1 1 x 2 2 ± x 2 1 x 1 2 ) {\displaystyle X=\arcsin \left(x_{1}{\sqrt {1-x_{2}^{2}}}\pm x_{2}{\sqrt {1-x_{1}^{2}}}\right)}

和差公式:

arcsin ( x ± y ) = arcsin ( 1 + x 2 y 2 1 + x 4 + y 4 2 x 2 y 2 2 x 2 2 y 2 2 ) ± arcsin ( 1 x 2 + y 2 1 + x 4 + y 4 2 x 2 y 2 2 x 2 2 y 2 2 ) {\displaystyle \arcsin(x\pm y)=\arcsin \left({\sqrt {\frac {1+x^{2}-y^{2}-{\sqrt {1+x^{4}+y^{4}-2x^{2}y^{2}-2x^{2}-2y^{2}}}}{2}}}\right)\pm \arcsin \left({\sqrt {\frac {1-x^{2}+y^{2}-{\sqrt {1+x^{4}+y^{4}-2x^{2}y^{2}-2x^{2}-2y^{2}}}}{2}}}\right)}

倍变数公式: arcsin ( 2 x ) = 2 arcsin ( 1 1 4 x 2 2 ) {\displaystyle \arcsin(2x)=2\arcsin \left({\sqrt {\frac {1-{\sqrt {1-4x^{2}}}}{2}}}\right)}

arcsin ( x 2 ) = 2 arcsin ( 1 1 x 2 4 2 ) {\displaystyle \arcsin \left({\frac {x}{2}}\right)=2\arcsin \left({\sqrt {\frac {1-{\sqrt {1-{\frac {x^{2}}{4}}}}}{2}}}\right)}

arcsin ( k x ) = 2 arcsin ( 1 1 k 2 x 2 2 ) {\displaystyle \arcsin(kx)=2\arcsin \left({\sqrt {\frac {1-{\sqrt {1-k^{2}x^{2}}}}{2}}}\right)}

per 0 ≤ kx ≤ 1

正弦 · 余弦 · 正切 · 余切 · 正割 · 余割

反正弦 · 反余弦 · 反正切 · 反余切 · 反正割‎ · 反余割

正矢 · 余矢 · cis函数 · 余cis函数 · 半正矢 · 半余矢 · 外正割 · 外余割 · atan2 · 古德曼函数

正弦定理 · 余弦定理 · 正切定理 · 余切定理 · 勾股定理

三角函数恒等式 · 三角函数精确值 · 三角函数积分表 · 三角函数表 · 双曲三角函数 · 双曲三角函数恒等式

相关

  • 国际工业设计协会国际工业设计协会(The International Council of Societies of Industrial Design,ICSID),成立于1957年,是一个由多个国际工业设计组织发起成立的非营利组织,旨在提升全球工业设计
  • 阿瑞尼斯方程式阿伦尼乌斯方程(或公式)是化学反应的速率常数与温度之间的关系式,适用于基元反应和非基元反应,甚至某些非均相反应。其不定积分形式为:其中:从阿伦尼乌斯方程可以看出,
  • 吕德弗朗索瓦·吕德(François Rude,1784年1月4日-1855年11月3日),法国雕塑家。吕德出生于法国中东部的第戎,年轻时和父亲一起为人修造炉灶,1809年从第戎的艺术学校毕业到巴黎深造,1812
  • 柏林危机柏林危机(Berlin Crisis)共有三次,第一次发生于1948年,又称“柏林封锁(Berlin Blockade)”,是冷战开始后其中一个最早发生的危机,其导火线为1948年6月24日苏联阻塞铁路和到柏林西部
  • 赵奎娥赵奎娥(1956年-),中国女演员,二级演员,山东烟台人,毕业于中央戏剧学院表演系。其夫为著名演员陈宝国,二人是70年代中戏同学。儿子陈月末。
  • AC-130H/U Spectre/Spooky II炮艇机洛克希德AC-130空中炮艇(Lockheed AC-130 Gunship)是一个由美国空军所操作的重型对地攻击机系列,是以洛克希德C-130“力士”式(Hercules)运输机为基础所进一步改装而成,主要用于密
  • 多去氧核糖核酸病毒科姬蜂病毒属 茧蜂病毒属 多去氧核糖核酸病毒科(英语:Polydnaviridae)病毒以昆虫为宿主,包含2属53种。
  • 德国战争罪行德国政府曾在第二次世界大战之中组织并下令进行了多项战争犯罪行为。二战当中,纳粹德国政府实行的种族屠杀导致六百万犹太人死亡。大屠杀为其中最为知名的例子,与此同时也有数
  • 洛泰尔 (西法兰克国王)洛泰尔(法语:Lothaire de France,941年-986年3月2日)是西法兰克王国加洛林王朝的倒数第二位国王(954年—986年在位),西法兰克国王路易四世与王后萨克森的格尔贝格之子。他去世后不久
  • 发酵乳制品发酵乳制品是经过发酵的乳制品。通过发酵,牛奶中所含的一些乳糖被微生物分解为乳酸,并产生乙醛、丙酮、丁酮等香气物质。发酵增加了产品的保质期,同时提高了产品的口味并改善了