三角形

✍ dations ◷ 2025-04-04 11:10:36 #三角形
三角形,又称三边形,是由三条线段顺次首尾相连,或不共线的三点两两连接,所组成的一个闭合的平面图形,是最基本和最少边的多边形。一般用大写英语字母 A {displaystyle A} 、 B {displaystyle B} 和 C {displaystyle C} 为三角形的顶点标号;用小写英语字母 a {displaystyle a} 、 b {displaystyle b} 和 c {displaystyle c} 表示边;用 α {displaystyle alpha } 、 β {displaystyle beta } 和 γ {displaystyle gamma } 给角标号,又或者以 ∠ A B C {displaystyle angle ABC} 这样的顶点标号来表示。锐角三角形的所有内角均为锐角(即小于90°)。钝角三角形是其中一角为钝角(大于90°)的三角形,其余两角均小于90°。有一个角是直角(90°)的三角形为直角三角形。成直角的两条边称为“直角边”(cathetus),直角所对的边是“斜边”(hypotenuse);或最长的边称为“弦”,底部的一边称作“勾”(又作“句”),另一边称为“股”。斜边乘上斜边上的高÷2=勾股相乘÷2=此直角三角形面积(ch=ab)直角三角形各边与角度的关系,可以三角比表示。详见三角函数。三条边边长皆不相等的三角形称为不等边三角形。等边三角形(又称正三角形),为三边相等的三角形。其三个内角相等,均为60°。它是锐角三角形的一种。设其边长是 a {displaystyle a} ,则其面积公式为 a 2 3 4 {displaystyle {frac {a^{2}{sqrt {3}}}{4}}} 。等边三角形是正四面体、正八面体和正二十面体这三个正多面体面的形状。六个边长相同的等边三角形可以拼成一个正六边形。等腰三角形是三条边中有两条边相等(或是其中两只内角相等)的三角形。等腰三角形中的两条相等的边被称为“腰”,而另一条边被称为“底边”,两条腰交叉组成的那个点被称为“顶点”,它们组成的角被称为“顶角”。等边三角形和等腰直角三角形是等腰三角形的特殊形式。退化三角形是指面积为零的三角形。满足下列条件之一的三角形即可称为退化三角形:三个内角的度数为(180°,0°,0°)或(90°,90°,0°);三边其中一条边的长度为0;一条边的长度等于另外两条之和。有人认为退化三角形并不能算是三角形,这是由于它介乎于三角不等式之间,在一些资料中已否定了其中一条边等于其余两条边之和的情况。勒洛三角形(英语:Reuleaux triangle),也译作莱洛三角形或弧三角形,又被称为划粉形或曲边三角形,是除了圆形以外,最简单易懂的勒洛多边形,一个定宽曲线。将一个曲线图放在两条平行线中间,使之与这两平行线相切,则可以做到:无论这个曲线图如何运动,只要它还是在这两条平行线内,就始终与这两条平行线相切。这个定义由十九世纪的德国工程师Franz Reuleaux(英语:Franz Reuleaux)命名。三角形具有稳定性,若二个三角形有以下的边角关系确定后,它的形状、大小就不会改变,二个三角形即为全等三角形。注意,SSA(Side-Side-Angle、边、边、角)不能保证两个三角形全等,除非该角大于等于90°。三角形中有着一些特殊线段,是三角形研究的重要对象。以上特殊线段,每个三角形均有三条,且三线共点。设在 Δ A B C {displaystyle Delta ABC,} 中,若三边 a {displaystyle a} 、 b {displaystyle b} 、 c {displaystyle c,} 的中线分别为 m a {displaystyle m_{a}} 、 m b {displaystyle m_{b}} 、 m c {displaystyle m_{c}} ,则:设在 Δ A B C {displaystyle Delta ABC,} 中,连接三个顶点 A {displaystyle A} 、 B {displaystyle B} 、 C {displaystyle C} 上的高分别记作 h a {displaystyle h_{a}} 、 h b {displaystyle h_{b}} 、 h c {displaystyle h_{c}} ,则:其中 s = a + b + c 2 {displaystyle s={frac {a+b+c}{2}}} 。设在 Δ A B C {displaystyle Delta ABC,} 中,若三个角 A {displaystyle A} 、 B {displaystyle B} 、 C {displaystyle C} 的角平分线分别为 t a {displaystyle t_{a}} 、 t b {displaystyle t_{b}} 、 t c {displaystyle t_{c}} ,则:三角形的内心、外心、垂心及形心称为三角形的四心,定义如下:关于三角形的四心,有这样的一首诗:外心中点垂线伸, 垂心垂直画三高, 形心角连线中心。垂心(蓝)、形心(黄)和外心(绿)能连成一线,且成比例1:2,称为欧拉线,与九点圆的圆心(红)四点共线,为垂心和形心线段的中点。连同以下的旁心,合称为三角形的五心:设外接圆半径为 R {displaystyle R} , 内切圆半径为 r {displaystyle r} ,则:其中 △ {displaystyle triangle } 为三角形面积; s {displaystyle s} 为三角形半周长, s = a + b + c 2 {displaystyle s={frac {a+b+c}{2}}}三角形的面积 A {displaystyle A} 是底边 b {displaystyle b} 与高 h {displaystyle h} 乘积的一半,即:其中的高是指底边与对角的垂直距离。从右图可知,将两个全等三角形相拼,可得一平行四边形。而将该平行四边形分割填补,正好能得到一个面积等于 b h {displaystyle bh} 的长方形。因此原来的三角形面积为证毕。设 a {displaystyle a} b {displaystyle b} 为已知的两边, γ {displaystyle gamma } 为该两边的夹角,则三角形面积是:观察右图,根据正弦的定义:因此:将此式代入基本公式,可得:证毕。β {displaystyle beta } 、 γ {displaystyle gamma } 为已知的两角, a {displaystyle a} 为该两角的夹边,则三角形面积是:从正弦定理可知:代入 A = 1 2 a b sin ⁡ γ {displaystyle A={frac {1}{2}}absin gamma } ,得:注意到 α + β + γ = 180 ∘ {displaystyle alpha +beta +gamma =180^{circ }} ,因此:证毕。海伦公式,其表示形式为:其中 s {displaystyle s} 等于三角形的半周长,即:秦九韶亦求过类似的公式,称为三斜求积法:也有用幂和来表示的公式:亦可用Cayley–Menger行列式表示的公式:基于海伦公式在三角形拥有非常小的角度时并不数值稳定,有一个变化的计法。设 a ≥ b ≥ c {displaystyle ageq bgeq c} ,三角形面积为:设 a {displaystyle a} 、 b {displaystyle b} 、 c {displaystyle c} 为三角形三条边, α {displaystyle alpha } 、 β {displaystyle beta } 、 γ {displaystyle gamma } 为相应边的对角。从余弦定理可知:以毕氏三角恒等式可得:将此式代入 A = 1 2 a b sin ⁡ γ {displaystyle A={frac {1}{2}}absin {gamma }} ,得:因式分解及简化后可得:代入 s = a + b + c 2 {displaystyle s={frac {a+b+c}{2}}} ,即可证毕。由 ( x 1 , y 1 ) {displaystyle (x_{1},y_{1})} 、 ( x 2 , y 2 ) {displaystyle (x_{2},y_{2})} 及 ( x 3 , y 3 ) {displaystyle (x_{3},y_{3})} 三个顶点构成的三角形,其面积可用行列式的绝对值表示:无论三角形的顶点位置如何,该三角形总可以用一个直角梯形(或矩形)和两个直角三角形面积的和差来表示,而在直角坐标系中,已知直角梯形(或矩形)和直角三角形的顶点的坐标,该三角形的面积容易求出,即用上述的行列式表示。若三个顶点设在三维座标系上,即由 ( x 1 , y 1 , z 1 ) {displaystyle (x_{1},y_{1},z_{1})} 、 ( x 2 , y 2 , z 2 ) {displaystyle (x_{2},y_{2},z_{2})} 及 ( x 3 , y 3 , z 3 ) {displaystyle (x_{3},y_{3},z_{3})} 三个顶点构成三角形,其面积等于各自在主平面上投影面积的毕氏和,即:设三角形三边边长分别为 a {displaystyle a} 、 b {displaystyle b} 及 c {displaystyle c} ,三角形半周长( a + b + c 2 {displaystyle {frac {a+b+c}{2}}} )为 s {displaystyle s} ,内切圆半径为 r {displaystyle r} ,则:若设外接圆半径为 R {displaystyle R} ,则:内切圆半径公式根据右图,设 A B ¯ = c {displaystyle {overline {AB}}=c} , A C ¯ = b {displaystyle {overline {AC}}=b} , B C ¯ = a {displaystyle {overline {BC}}=a} ,则三角形面积可表示为:外接圆半径公式根据正弦定理:因此:设从一角出发,引出两边的向量为 a {displaystyle mathbf {a} } 及 b {displaystyle mathbf {b} } ,三角形的面积为:根据向量积定义, | a × b | = | a | | b | sin ⁡ γ {displaystyle |mathbf {a} times mathbf {b} |=|mathbf {a} ||mathbf {b} |sin gamma } , 其中 γ {displaystyle gamma } 是两支向量的夹角。因此:证毕。在三角形 A B C {displaystyle ABC,} 中,三个角的半角的正切和三边有如下关系:以正弦及余弦之比表示正切:因为所以而所以即同理可得

相关

  • VIAF虚拟国际规范文档(英语:Virtual International Authority File,VIAF)是一个国际性的规范文档。该项目联合了许多国家图书馆,由线上电脑图书馆中心(OCLC)负责运营。此项目最初是为连
  • 麻疹、腮腺炎、德国麻疹结合疫苗麻腮风三联疫苗(英语:Measles mumps and rubella vaccine, MMR),港澳台译为麻疹腮腺炎德国麻疹混合疫苗,,大陆简称麻腮风疫苗,是预防麻疹、腮腺炎、风疹(德国麻疹)的疫苗,由三种疾病病
  • 磺胺美曲磺胺美曲是一种磺胺类药物,其INN名称是“Sulfametrole”。该药物可用于治疗由细菌感染引起的疾病等病症。该药物在血液中的半衰期尚不明确。该药物最早于1975年引入临床使用
  • 荷兰语荷兰语(英语:Dutch),又称尼德兰语(荷兰语:Nederlands),属于印欧语系日耳曼语族的西日耳曼语支,主要通行于荷兰,在比利时与苏里南有六成人口使用(这三个国家共同组成荷兰语联盟);也是荷兰
  • 拓扑替康拓扑替康(Topotecan;商品名:Hycamtin®,癌康定)是一种化学治疗药物,为拓朴异构酶I抑制物,一般用来治疗卵巢癌与肺癌等癌症。为静脉注射,不过有口服的研究。卤化/核糖核苷酸还原酶抑
  • 化学反应的速率反应速率(英语:Rate of reaction)是在化学反应中,反应物转变成生成物的速度。不同反应的速率有所不同。例如铁的生锈(氧化)过程的需时以年来计算;在火中燃烧纤维素,却只需要数秒钟的
  • 氮化硫聚氮化硫,化学式(SN)x,是一种人工合成的纯单晶体无机聚合物,由硫、氮原子相间的链构成。它的一些共振式如下:聚氮化硫具有高度的各向异性和金属性。在平行于S—N链的方向上,导电
  • CD164876353599ENSG00000135535ENSMUSG00000019818Q04900Q9R0L9NM_006016、NM_001142401、NM_001142402、NM_001142403、NM_001142404、NM_001346500NM_016898NP_001135873、NP_0
  • 视网膜黄斑黄斑(Macula lutea,源自拉丁语macula,“斑”+lutea,“黄”),是人眼视网膜中央附近一卵圆形染色区域,直径约5.5mm。黄斑还可再细分为黄斑凸、黄斑凹、黄斑凹无血管区(foveal avascula
  • 根西镑根西镑(英语:Guernsey pound)是目前根西的流通货币。从1921年开始根西与英国结成货币联盟,根西镑不是一个独立的货币,而是一个英镑占主的地方地区性发行的纸币和硬币,它类似于苏格