倒频谱

✍ dations ◷ 2025-04-28 19:39:12 #信号处理

倒频谱(cepstrum),顾名思义,就是将频谱(spectrum)的英文前四个字母反过来写。倒频谱是为了某些时候,为了计算方便,将原来信号的频谱先转成类似分贝的单位,再作逆傅里叶变换,把它视为一种新的信号做处理。倒频谱有复数倒频谱,及实数倒频谱。

倒频谱被定义在1963的论文(Bogert等)。定义如下:

复数倒频谱拥有频谱大小跟相位的信息,实数倒频谱只有频谱大小的信息,各有各的不同应用。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
其中 X ^ = log | X ( F ) | + j arg {\displaystyle {\widehat {X}}\left=\log |X(F)|+j\arg}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }
2. arg ] {\displaystyle \arg]} 有无限多的解
当输入是实数时,因为 log | X ( F ) | {\displaystyle \log |X(F)|} 偶对称, arg {\displaystyle \arg} 奇对称,所以复数倒频谱的值为实数

C = 1 2 1 2 log | X ( F ) | e j 2 π F n d F {\displaystyle C\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}\log |X(F)|e^{j{2\pi }Fn}dF}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }

频谱图上的独立变数是频率,而倒频谱图上的独立变数为倒频率(quefrency),倒频率是一种时间的度量单位。举个例子,声音信号采样速率等于44100赫兹,在倒频谱上有个很大的值在倒频率等于100,代表实际上在44100/100=441赫兹有很大的值,这值出现在倒频谱上因为频谱上周期性出现,而频谱上出现的周期与倒频谱很大的值出现的位置有关。

滤波器(filter)常使用在频谱上,用来保存或删除我们所要或不要的信息,经过上面的许多讨论,不难猜到,倒滤波器(lifter)就是在倒频谱上所使用的滤波器。低通的倒滤波器跟低通滤波器有点类似,它可以借由在倒频谱上乘以一个window系数,使倒频谱上的高倒频率被压抑,如此依来,当信号转回时域空间时会变成一个较平滑的信号。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
问题: X ^ ( F ) {\displaystyle {\widehat {X}}\left(F\right)} 可能会无限大, 且对于arg(x)有无限多个解

先对信号做Z变换, 并整理一下系数, 让他变成下面的形式
X ( Z ) = A Z r k = 1 m i ( 1 a k Z 1 ) k = 1 m 0 ( 1 b k Z ) k = 1 P i ( 1 c k Z 1 ) k = 1 P 0 ( 1 d k Z ) {\displaystyle X\left(Z\right)={\cfrac {A{Z^{r}}\prod _{k=1}^{m_{i}}(1-{a_{k}}{Z^{-1}})\prod _{k=1}^{m_{0}}(1-{b_{k}}Z)}{\prod _{k=1}^{P_{i}}(1-{c_{k}}{Z^{-1}})\prod _{k=1}^{P_{0}}(1-{d_{k}}Z)}}}
其中 | a k | , | b k | , | c k | , | d k | 1 {\displaystyle \left|a_{k}\right|,\left|b_{k}\right|,\left|c_{k}\right|,\left|d_{k}\right|\leq 1}

分子:
第一项A是系数
第二项 Z r {\displaystyle Z^{r}} 是延迟
第三项是位于单位圆内的零点
第四项是位于单位圆外的零点

分母:
第一项是位于单位圆内的极点
第二项是位于单位圆外的极点

X ( Z ) {\displaystyle X\left(Z\right)} 取log变成 X ^ ( Z ) {\displaystyle {\widehat {X}}\left(Z\right)}
X ^ ( Z ) = l o g X ( Z ) = log A + r log Z + k = 1 m i log ( 1 a k Z 1 ) + k = 1 m 0 log ( 1 b k Z ) k = 1 P i log ( 1 c k Z 1 ) k = 1 P 0 log ( 1 d k Z ) {\displaystyle {\widehat {X}}\left(Z\right)=logX\left(Z\right)=\log A+r\log Z+\sum _{k=1}^{m_{i}}\log(1-{a_{k}}{Z^{-1}})+\sum _{k=1}^{m_{0}}\log(1-{b_{k}}Z)-\sum _{k=1}^{P_{i}}\log(1-{c_{k}}{Z^{-1}})-\sum _{k=1}^{P_{0}}\log(1-{d_{k}}Z)}
假设r=0, 因为这只是延迟, 并不会破坏波形
根据Z变换所得到的系数, 我们可以利用泰勒展开得到Z的反变换
x ^ = { log A if  n = 0 k = 1 m i a k n n + k = 1 P i c k n n if  n > 0 k = 1 m 0 b k n n k = 1 P 0 d k n n if  n < 0 {\displaystyle {\widehat {x}}\left={\begin{cases}\log A&{\mbox{if }}n=0\\-\sum _{k=1}^{m_{i}}{\cfrac {{a_{k}}^{n}}{n}}+\sum _{k=1}^{P_{i}}{\cfrac {{c_{k}}^{n}}{n}}&{\mbox{if }}n>0\\\sum _{k=1}^{m_{0}}{\cfrac {{b_{k}}^{-n}}{n}}-\sum _{k=1}^{P_{0}}{\cfrac {{d_{k}}^{-n}}{n}}&{\mbox{if }}n<0\end{cases}}}

注意事项
1. x ^ {\displaystyle {\widehat {x}}\left} 总是IIR(无限冲激响应)
2.对于FIR(有限冲激响应)的情况, c k = 0 , d k = 0 {\displaystyle c_{k}=0,d_{k}=0}

Z X ^ ( Z ) = Z X ( Z ) X ( Z ) {\displaystyle Z\cdot {\widehat {X}}'\left(Z\right)=Z\cdot {\cfrac {{X}'\left(Z\right)}{{X}\left(Z\right)}}}
Z X ( Z ) = Z X ^ ( Z ) X ( Z ) {\displaystyle Z{X}'\left(Z\right)=Z{\widehat {X}}'\left(Z\right)\cdot {X}\left(Z\right)}
对其做Z的反变换
n x = k = k x ^ x {\displaystyle nx=\sum _{k=-\infty }^{\infty }k{\widehat {x}}\leftx}

x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}

分别对于x的四种不同的状况做延伸
1.对于x是因果(causal)和最小相位(minimum phase) i.e. x = x ^ = 0 , n < 0 {\displaystyle x={\widehat {x}}\left=0,n<0}
对于 x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}
可得出
x = k = 0 k n x ^ x f o r   n > 0 {\displaystyle x=\sum _{k=0}^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n>0}

x = x ^ x + k = 0 n 1 k n x ^ x {\displaystyle x={\widehat {x}}\leftx+\sum _{k=0}^{n-1}{\frac {k}{n}}{\widehat {x}}\leftx}
2.对于x是最小相位(minimum phase)
x ^ = { 0 if  n < 0 x x k = 0 n 1 k n x ^ x x

相关

  • 大亨小传《了不起的盖茨比》(英语:The Great Gatsby,又译《大亨小传》),出版于1925年,是美国作家弗朗西斯·斯科特·菲茨杰拉德所写的一部以1920年代的纽约市及长岛为背景的中篇小说,被视为
  • 洋鬼子洋鬼子、鬼子是由清末起国人对欧美、日本人等外国人的贬称。“鬼子”一词始见于《世说新语·方正》:“卢志于众坐问陆士衡(陆机):‘陆逊、陆抗,是君何物?’……士衡正色曰:‘我父祖
  • 布留洛夫卡尔·巴甫洛维奇·布留洛夫(俄语:Карл Па́влович Брюлло́в;1799年12月12日-1852年6月11日)是俄国著名画家,俄国19世纪上半期学院派的代表大师,新古典主义至
  • 抗体依赖性细胞毒杀过敏反应第二型致病免疫反应(tissue-specific or cytotoxic hypersensitivity),又称为抗体诱发型过敏 ,其起因为患者免疫系统所产生的抗体会对于患者细胞上的抗原产生免疫反应。细胞毒杀
  • 09II型核潜艇09II型潜艇(北约代号:夏级,英语:)是中国人民解放军海军的第一代弹道导弹核潜艇,该型艇由攻击潜艇09I型核潜艇扩大船壳改进而来,在艇体上插入弹道导弹舱段。1970年设计方案完成,开始
  • 陈震 (官员)陈震曾任抗日战争、解放战争时期师长,后任太原县县长,解放战争胜利后太原县撤销,依照组织分配来到天津。到天津后任天津市外贸局(后改名经贸委,现名商务委)局长。
  • 泽西语文学泽西语是在海峡群岛泽西岛使用的一种诺曼语方言。它的文学传统可追溯至韦斯,一名12世纪的泽西诗人。不过,在泽西岛1780年引入了首部印刷机之前,存留下来的泽西语文献很少。最初
  • 柴宝成柴宝成(1958年-),男,汉族,天津津南人,中华人民共和国政治人物,曾任全国工商联常委、天津市商会副会长、津南区政协副主席,第九届、第十届、第十一届全国政协委员。2008年,当选第十一届
  • 章凤诏章凤诏(?年-?年),明末曾任四川顺庆府岳池县知县。是一位政治人物,明清时曾在四川顺庆府岳池县(位于今四川东北部,武周万岁通天二年分南充、相如二县置,是一个千年古县)担任官吏。
  • 迪奥多·罗赛克迪奥多·罗赛克(Theodore Roethke,IPA: ; RET-key,1908年5月25日-1963年8月1日) 美国诗人,他发表过数卷具有节奏感和自然景象的诗集。1954年,以诗集《苏醒》(The Waking)获得普利