倒频谱

✍ dations ◷ 2025-07-11 07:41:30 #信号处理

倒频谱(cepstrum),顾名思义,就是将频谱(spectrum)的英文前四个字母反过来写。倒频谱是为了某些时候,为了计算方便,将原来信号的频谱先转成类似分贝的单位,再作逆傅里叶变换,把它视为一种新的信号做处理。倒频谱有复数倒频谱,及实数倒频谱。

倒频谱被定义在1963的论文(Bogert等)。定义如下:

复数倒频谱拥有频谱大小跟相位的信息,实数倒频谱只有频谱大小的信息,各有各的不同应用。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
其中 X ^ = log | X ( F ) | + j arg {\displaystyle {\widehat {X}}\left=\log |X(F)|+j\arg}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }
2. arg ] {\displaystyle \arg]} 有无限多的解
当输入是实数时,因为 log | X ( F ) | {\displaystyle \log |X(F)|} 偶对称, arg {\displaystyle \arg} 奇对称,所以复数倒频谱的值为实数

C = 1 2 1 2 log | X ( F ) | e j 2 π F n d F {\displaystyle C\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}\log |X(F)|e^{j{2\pi }Fn}dF}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }

频谱图上的独立变数是频率,而倒频谱图上的独立变数为倒频率(quefrency),倒频率是一种时间的度量单位。举个例子,声音信号采样速率等于44100赫兹,在倒频谱上有个很大的值在倒频率等于100,代表实际上在44100/100=441赫兹有很大的值,这值出现在倒频谱上因为频谱上周期性出现,而频谱上出现的周期与倒频谱很大的值出现的位置有关。

滤波器(filter)常使用在频谱上,用来保存或删除我们所要或不要的信息,经过上面的许多讨论,不难猜到,倒滤波器(lifter)就是在倒频谱上所使用的滤波器。低通的倒滤波器跟低通滤波器有点类似,它可以借由在倒频谱上乘以一个window系数,使倒频谱上的高倒频率被压抑,如此依来,当信号转回时域空间时会变成一个较平滑的信号。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
问题: X ^ ( F ) {\displaystyle {\widehat {X}}\left(F\right)} 可能会无限大, 且对于arg(x)有无限多个解

先对信号做Z变换, 并整理一下系数, 让他变成下面的形式
X ( Z ) = A Z r k = 1 m i ( 1 a k Z 1 ) k = 1 m 0 ( 1 b k Z ) k = 1 P i ( 1 c k Z 1 ) k = 1 P 0 ( 1 d k Z ) {\displaystyle X\left(Z\right)={\cfrac {A{Z^{r}}\prod _{k=1}^{m_{i}}(1-{a_{k}}{Z^{-1}})\prod _{k=1}^{m_{0}}(1-{b_{k}}Z)}{\prod _{k=1}^{P_{i}}(1-{c_{k}}{Z^{-1}})\prod _{k=1}^{P_{0}}(1-{d_{k}}Z)}}}
其中 | a k | , | b k | , | c k | , | d k | 1 {\displaystyle \left|a_{k}\right|,\left|b_{k}\right|,\left|c_{k}\right|,\left|d_{k}\right|\leq 1}

分子:
第一项A是系数
第二项 Z r {\displaystyle Z^{r}} 是延迟
第三项是位于单位圆内的零点
第四项是位于单位圆外的零点

分母:
第一项是位于单位圆内的极点
第二项是位于单位圆外的极点

X ( Z ) {\displaystyle X\left(Z\right)} 取log变成 X ^ ( Z ) {\displaystyle {\widehat {X}}\left(Z\right)}
X ^ ( Z ) = l o g X ( Z ) = log A + r log Z + k = 1 m i log ( 1 a k Z 1 ) + k = 1 m 0 log ( 1 b k Z ) k = 1 P i log ( 1 c k Z 1 ) k = 1 P 0 log ( 1 d k Z ) {\displaystyle {\widehat {X}}\left(Z\right)=logX\left(Z\right)=\log A+r\log Z+\sum _{k=1}^{m_{i}}\log(1-{a_{k}}{Z^{-1}})+\sum _{k=1}^{m_{0}}\log(1-{b_{k}}Z)-\sum _{k=1}^{P_{i}}\log(1-{c_{k}}{Z^{-1}})-\sum _{k=1}^{P_{0}}\log(1-{d_{k}}Z)}
假设r=0, 因为这只是延迟, 并不会破坏波形
根据Z变换所得到的系数, 我们可以利用泰勒展开得到Z的反变换
x ^ = { log A if  n = 0 k = 1 m i a k n n + k = 1 P i c k n n if  n > 0 k = 1 m 0 b k n n k = 1 P 0 d k n n if  n < 0 {\displaystyle {\widehat {x}}\left={\begin{cases}\log A&{\mbox{if }}n=0\\-\sum _{k=1}^{m_{i}}{\cfrac {{a_{k}}^{n}}{n}}+\sum _{k=1}^{P_{i}}{\cfrac {{c_{k}}^{n}}{n}}&{\mbox{if }}n>0\\\sum _{k=1}^{m_{0}}{\cfrac {{b_{k}}^{-n}}{n}}-\sum _{k=1}^{P_{0}}{\cfrac {{d_{k}}^{-n}}{n}}&{\mbox{if }}n<0\end{cases}}}

注意事项
1. x ^ {\displaystyle {\widehat {x}}\left} 总是IIR(无限冲激响应)
2.对于FIR(有限冲激响应)的情况, c k = 0 , d k = 0 {\displaystyle c_{k}=0,d_{k}=0}

Z X ^ ( Z ) = Z X ( Z ) X ( Z ) {\displaystyle Z\cdot {\widehat {X}}'\left(Z\right)=Z\cdot {\cfrac {{X}'\left(Z\right)}{{X}\left(Z\right)}}}
Z X ( Z ) = Z X ^ ( Z ) X ( Z ) {\displaystyle Z{X}'\left(Z\right)=Z{\widehat {X}}'\left(Z\right)\cdot {X}\left(Z\right)}
对其做Z的反变换
n x = k = k x ^ x {\displaystyle nx=\sum _{k=-\infty }^{\infty }k{\widehat {x}}\leftx}

x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}

分别对于x的四种不同的状况做延伸
1.对于x是因果(causal)和最小相位(minimum phase) i.e. x = x ^ = 0 , n < 0 {\displaystyle x={\widehat {x}}\left=0,n<0}
对于 x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}
可得出
x = k = 0 k n x ^ x f o r   n > 0 {\displaystyle x=\sum _{k=0}^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n>0}

x = x ^ x + k = 0 n 1 k n x ^ x {\displaystyle x={\widehat {x}}\leftx+\sum _{k=0}^{n-1}{\frac {k}{n}}{\widehat {x}}\leftx}
2.对于x是最小相位(minimum phase)
x ^ = { 0 if  n < 0 x x k = 0 n 1 k n x ^ x x

相关

  • IMPA1肌醇单磷酸酶(英语:Inositol monophosphatase,EC 3.1.3.25)是一种存在于所有细胞中的酶并被认为是双相障碍中的关键点。卡巴咪嗪在临床中备用作为一种肌醇单磷酸酶抑制剂。此酶
  • 450110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 飞航公路总局 民用航空局 高速公路局 航港局 铁道局台湾铁路管理局 中华邮政公司 台湾港务公司 桃园国际机场公司国道 省道 县道 - 市道(列表) 乡道 - 区道 专用公路 编号与名称对
  • 莫·海德莫·海德(Mo Hayder,1962年-)是英国犯罪小说家,著有《啼死鸟》(Birdman)、《治疗》(The Treatment)等作品。莫·海德15岁便离开学校,她做过许多工作,如:酒吧女侍、警卫、片场人员、东京
  • 诺尔维特塞浦路斯·诺尔维特(波兰语:Cyprian Norwid,,1821年9月24日-1883年5月23日)是一位波兰诗人、剧作家、画家和雕塑家。他出生在华沙附近的马佐夫舍村 。他的母亲祖先是波兰国王约翰
  • 卡洛曼二世卡洛曼二世(法语:Carloman II,866年12月6日-884年12月12日),是西法兰克王国加洛林王朝国王路易二世与王后勃艮第的安斯加尔德的幼子,879年其父王死后与兄路易三世同时即位为西法兰
  • 路易·朱尔·特罗胥拿破仑三世皇帝 (国家元首) 路易·朱尔·特罗胥(Louis Jules Trochu,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI"
  • 丽宝乐园渡假区丽宝乐园渡假区(英语:LIHPAO RESORT)是位于台湾台中市后里区的大型渡假区,是台湾第一个民间兴建营运后转移模式(BOT)休闲产业开发案,2000年7月1日开园时为长亿关系企业经营的“月眉
  • 台湾新文学《台湾新文学》,台湾日治时期的文学刊物,1935年12月28日创刊,由台湾新文学杂志社编辑发行,集结了台湾全岛进步的作家。有中日两种语文的版本。表面标榜为文艺运动,实则是具有政治
  • 陈晓萍陈晓萍(1963年9月-2011年5月16日),女,福建泉州人,中国企业家。陈正宗孙女。早年曾先后在福万玩具公司、中华电子公司福州公司、福州西湖旅游贸易公司工作,1995年下岗。1996年,她组织