倒频谱

✍ dations ◷ 2024-12-24 10:15:27 #信号处理

倒频谱(cepstrum),顾名思义,就是将频谱(spectrum)的英文前四个字母反过来写。倒频谱是为了某些时候,为了计算方便,将原来信号的频谱先转成类似分贝的单位,再作逆傅里叶变换,把它视为一种新的信号做处理。倒频谱有复数倒频谱,及实数倒频谱。

倒频谱被定义在1963的论文(Bogert等)。定义如下:

复数倒频谱拥有频谱大小跟相位的信息,实数倒频谱只有频谱大小的信息,各有各的不同应用。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
其中 X ^ = log | X ( F ) | + j arg {\displaystyle {\widehat {X}}\left=\log |X(F)|+j\arg}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }
2. arg ] {\displaystyle \arg]} 有无限多的解
当输入是实数时,因为 log | X ( F ) | {\displaystyle \log |X(F)|} 偶对称, arg {\displaystyle \arg} 奇对称,所以复数倒频谱的值为实数

C = 1 2 1 2 log | X ( F ) | e j 2 π F n d F {\displaystyle C\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}\log |X(F)|e^{j{2\pi }Fn}dF}
可能遭遇的问题
1. log 0 = {\displaystyle \log 0=-\infty }

频谱图上的独立变数是频率,而倒频谱图上的独立变数为倒频率(quefrency),倒频率是一种时间的度量单位。举个例子,声音信号采样速率等于44100赫兹,在倒频谱上有个很大的值在倒频率等于100,代表实际上在44100/100=441赫兹有很大的值,这值出现在倒频谱上因为频谱上周期性出现,而频谱上出现的周期与倒频谱很大的值出现的位置有关。

滤波器(filter)常使用在频谱上,用来保存或删除我们所要或不要的信息,经过上面的许多讨论,不难猜到,倒滤波器(lifter)就是在倒频谱上所使用的滤波器。低通的倒滤波器跟低通滤波器有点类似,它可以借由在倒频谱上乘以一个window系数,使倒频谱上的高倒频率被压抑,如此依来,当信号转回时域空间时会变成一个较平滑的信号。

x ^ = 1 2 1 2 X ^ ( F ) e j 2 π F d F {\displaystyle {\widehat {x}}\left=\int _{-{\frac {1}{2}}}^{\frac {1}{2}}{\widehat {X}}\left(F\right)e^{j{2\pi }F}dF}
问题: X ^ ( F ) {\displaystyle {\widehat {X}}\left(F\right)} 可能会无限大, 且对于arg(x)有无限多个解

先对信号做Z变换, 并整理一下系数, 让他变成下面的形式
X ( Z ) = A Z r k = 1 m i ( 1 a k Z 1 ) k = 1 m 0 ( 1 b k Z ) k = 1 P i ( 1 c k Z 1 ) k = 1 P 0 ( 1 d k Z ) {\displaystyle X\left(Z\right)={\cfrac {A{Z^{r}}\prod _{k=1}^{m_{i}}(1-{a_{k}}{Z^{-1}})\prod _{k=1}^{m_{0}}(1-{b_{k}}Z)}{\prod _{k=1}^{P_{i}}(1-{c_{k}}{Z^{-1}})\prod _{k=1}^{P_{0}}(1-{d_{k}}Z)}}}
其中 | a k | , | b k | , | c k | , | d k | 1 {\displaystyle \left|a_{k}\right|,\left|b_{k}\right|,\left|c_{k}\right|,\left|d_{k}\right|\leq 1}

分子:
第一项A是系数
第二项 Z r {\displaystyle Z^{r}} 是延迟
第三项是位于单位圆内的零点
第四项是位于单位圆外的零点

分母:
第一项是位于单位圆内的极点
第二项是位于单位圆外的极点

X ( Z ) {\displaystyle X\left(Z\right)} 取log变成 X ^ ( Z ) {\displaystyle {\widehat {X}}\left(Z\right)}
X ^ ( Z ) = l o g X ( Z ) = log A + r log Z + k = 1 m i log ( 1 a k Z 1 ) + k = 1 m 0 log ( 1 b k Z ) k = 1 P i log ( 1 c k Z 1 ) k = 1 P 0 log ( 1 d k Z ) {\displaystyle {\widehat {X}}\left(Z\right)=logX\left(Z\right)=\log A+r\log Z+\sum _{k=1}^{m_{i}}\log(1-{a_{k}}{Z^{-1}})+\sum _{k=1}^{m_{0}}\log(1-{b_{k}}Z)-\sum _{k=1}^{P_{i}}\log(1-{c_{k}}{Z^{-1}})-\sum _{k=1}^{P_{0}}\log(1-{d_{k}}Z)}
假设r=0, 因为这只是延迟, 并不会破坏波形
根据Z变换所得到的系数, 我们可以利用泰勒展开得到Z的反变换
x ^ = { log A if  n = 0 k = 1 m i a k n n + k = 1 P i c k n n if  n > 0 k = 1 m 0 b k n n k = 1 P 0 d k n n if  n < 0 {\displaystyle {\widehat {x}}\left={\begin{cases}\log A&{\mbox{if }}n=0\\-\sum _{k=1}^{m_{i}}{\cfrac {{a_{k}}^{n}}{n}}+\sum _{k=1}^{P_{i}}{\cfrac {{c_{k}}^{n}}{n}}&{\mbox{if }}n>0\\\sum _{k=1}^{m_{0}}{\cfrac {{b_{k}}^{-n}}{n}}-\sum _{k=1}^{P_{0}}{\cfrac {{d_{k}}^{-n}}{n}}&{\mbox{if }}n<0\end{cases}}}

注意事项
1. x ^ {\displaystyle {\widehat {x}}\left} 总是IIR(无限冲激响应)
2.对于FIR(有限冲激响应)的情况, c k = 0 , d k = 0 {\displaystyle c_{k}=0,d_{k}=0}

Z X ^ ( Z ) = Z X ( Z ) X ( Z ) {\displaystyle Z\cdot {\widehat {X}}'\left(Z\right)=Z\cdot {\cfrac {{X}'\left(Z\right)}{{X}\left(Z\right)}}}
Z X ( Z ) = Z X ^ ( Z ) X ( Z ) {\displaystyle Z{X}'\left(Z\right)=Z{\widehat {X}}'\left(Z\right)\cdot {X}\left(Z\right)}
对其做Z的反变换
n x = k = k x ^ x {\displaystyle nx=\sum _{k=-\infty }^{\infty }k{\widehat {x}}\leftx}

x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}

分别对于x的四种不同的状况做延伸
1.对于x是因果(causal)和最小相位(minimum phase) i.e. x = x ^ = 0 , n < 0 {\displaystyle x={\widehat {x}}\left=0,n<0}
对于 x = k = k n x ^ x f o r   n 0 {\displaystyle x=\sum _{k=-\infty }^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n\neq 0}
可得出
x = k = 0 k n x ^ x f o r   n > 0 {\displaystyle x=\sum _{k=0}^{\infty }{\frac {k}{n}}{\widehat {x}}\leftx\quad for\ n>0}

x = x ^ x + k = 0 n 1 k n x ^ x {\displaystyle x={\widehat {x}}\leftx+\sum _{k=0}^{n-1}{\frac {k}{n}}{\widehat {x}}\leftx}
2.对于x是最小相位(minimum phase)
x ^ = { 0 if  n < 0 x x k = 0 n 1 k n x ^ x x

相关

  • 新罗新罗(韩语:신라)(前57年—935年)为朝鲜历史上的国家之一。据《三国史记》记载,新罗于前57年由朴赫居世居西干创建。532年,新罗兼并伽倻,开始在朝鲜半岛上与高句丽、百济三足鼎立。7
  • Nasub2/subSe硒化钠是一种无机化合物,由硒和钠,为一种氢硒酸盐,其化学式为Na2Se。可用硫化钠的制法,因为它们都是同族化物,具有类似性质,可由钠和硒在氨中或萘的存在下于四氢呋喃中反应即生成
  • 桑乌蒂耶尔蒙特桑 (上马恩省)桑乌蒂耶尔蒙特桑(法语:Semoutiers-Montsaon)是法国上马恩省的一个市镇,属于绍蒙区(Chaumont)绍蒙南县(Chaumont-Sud)。该市镇总面积27.4平方公里,2009年时的人口为897人。桑乌蒂耶尔
  • 哈维·米尔克哈维·柏拿·米尔克(英语:Harvey Bernard Milk,1930年5月22日-1978年11月27日),美国LGBT权利运动人士,也是美国政坛中第一位公开同性恋身份的政治人物。他在1978年就任旧金山市监督
  • 阿布·阿拔斯·阿卜杜拉·萨法赫·本·穆罕默德阿布·阿拔斯(721年或724年或727年—754年;全名为:阿布·阿拔斯·阿卜杜拉·萨法赫·本·穆罕默德,阿拉伯语:أبو العباس عبد الله السفاح بن محمد ,
  • 劳伦斯·洛杉劳伦斯·洛杉,(英语:Lawrence LeShan, 1920年-)是一个心理学家,教育家,以及畅销书《谋划的技巧》的作者,此书是一本实用谋划技巧指南。他和其他同行在“专业文学十三书”里一起写了
  • 今村奈良臣今村 奈良臣(日语:今村 奈良臣/いまむら ならおみ  */?,1934年4月1日-2020年2月28日),日本农业经济学家,东京大学名誉教授。1934年生于大分县。1957年毕业于东京大学农学部农业经
  • 皇家印度海军兵变皇家印度海军兵变(英语:Royal Indian Navy Mutiny)(或称孟买兵变(Bombay Mutiny))指印度英国殖民地时期的1946年,在皇家印度海军服役的印度兵中发生的兵变,包括各港口军事基地兵变与
  • 安那托利·托多洛夫安那托利·托多洛夫(保加利亚语:Анатоли Тонов Тодоров,1985年4月24日-)保加利亚足球运动员,司职中场,现效力保加利亚足球乙级联赛布里斯特尼克足球俱乐部。因
  • 本因坊算悦本因坊算悦(1611年-1658年9月16日),生于日本京都,本姓杉村,日本江戸时代围棋棋士,二世本因坊,棋力上手(七段)。相传为一世本因坊算砂的儿子,拜于算砂门下学棋,法名日信。1623年十三岁时