首页 >
代数数论
✍ dations ◷ 2025-06-28 15:11:09 #代数数论
在数学中,代数数论是数论的一支,其中我们将“数”的概念延伸,以解决具体的数论问题。我们在代数数论中考虑代数数,这类数是有理系数多项式的根。与此相关的概念是数域,这是有理数域的有限扩张。在此框架下能推广整数为代数整数,并研究一个数域里的代数整数。代数整数在加法、减法与乘法下构成一个环,但整数的许多性质并不能推广到一般数域里的代数整数上,其中一个例子是素约数分解的唯一性(又称算术基本定理),这是十九世纪数学家试图证明费马大定理时遇到的主要阻碍,然而代数数论的应用不仅止于此。数学中一些较深入的理论有助于让我们了解代数数与代数整数的性质——包括伽罗瓦理论、伽罗瓦上同调、类域论、表示理论与L-函数的相关理论等等。数论中的许多问题可借由“模 p”(其中 p 为素数)来研究。这套技术导向p进数的建构,而p进数是局部域的例子;局部域的研究运用了一些研究数域时的相同方法,但是通常更容易处理。一般数域上的陈述常与各个局部域上的相应陈述有关,例如哈瑟原理:“一个有理系数二次方程在有理数域上有解,当且仅当它在实数上及在每个素数 p 之 p进数域上有解”。这类结果往往被称作局部-整体原理,其中“局部”意指局部域,而“整体”意指数域。代数数域K的整数环OK的元素的素分解和整数环Z的素数分解有不同之处,不是每个OK的元素都唯一分解。虽然OK元素的唯一分解束在某些情况下可能成立,如高斯整环,但在其它情况下可能会失败, 如二次域Z 中,6就不是唯一分解|:
6
=
2
⋅
3
=
(
1
+
−
5
)
⋅
(
1
−
−
5
)
.
{displaystyle 6=2cdot 3=(1+{sqrt {-5}})cdot (1-{sqrt {-5}}).}OK的理想类群是一个整数环OK的元素是否唯一因子分解的度量,特别是当整数环OK理想类群是平凡群时,当且仅当O为唯一分解整环。0的唯一因子分解和OK素理想间关系。OK元素的唯一分解可能成立:这时OK的理想的唯一分解成素理想(即它是一个戴德金整环)。这使得在研究OK的素理想尤其重要。从另方面,从整数环Z更改为代数数域K的整数环OK后,整数环Z中素数就能生成Z素理想(其实,Z的每一个素理想(p)的形式是:pZ)可同一素数在O中可能不再生成素理想,例如,在高斯整环中,理想2Z不再是素理想:但理想3Z是一个素理想。高斯整环唯一因子分解完整的答案使用费尔马大定理,其结果为:得出这种简单的结果对更一般的整数环来说是代数数论的基本问题。当代数数域K是有理数Q的阿贝尔扩张时(即有交换伽罗瓦群的扩张)类域论实现了这一目标。(根据类域论,因K为有理域Q时OK才有唯一分解,以下K=Q,注意有理域Q和有理数域不同,实域R和实数域不同)在OK素理想的概念的一个重要的推广是理想论,也叫赋值论,这两种方法之间的关系如下:运算为通常的绝对值函数|·|,映射有理域Q→实域R的,令绝对值函数|·|p: 定义称为p-adic绝对赋值,p∈Z中的素数。由奥斯特洛夫斯基的定理,所有p-adic绝对赋值对Q是等价类,p-adic绝对赋值可看成类似通常素数。更普遍的,代数数域K的绝对赋值称为一个素点。K中素元分两类:像p-adic绝对赋值|·|p这种等价类是有限的,被称为有限素元(有限素点)。而通过复域C的模|·|方式定义的素元可看成复域C一个无限子集,被称为无限素元(或无限素点)。因此,一般表示Q的素元集合为{2,3,5,7,...,∞},在这种情况下|·|∞是有理域Q的素元(素点)。K的无限素元可有嵌入同态K→C(即非零的环同态,从K到C)。具体来说,可把嵌入分成两个不相交的子集,那些像在R中算一个子集S1,其余的为另一子集S2。S1的每个嵌入σ:K→R,对应唯一一个和通常绝对值一样的绝对赋值;这种方式产生的一个素元的被称为一个实素元(或实素点)。S2的一个嵌入τ:是K→C不包含在R中的的像,可以形成另一个唯一的嵌入τ,称为共轭嵌入,组成的复共轭映射为τ的C→C.而此绝对赋值为复数的模:|z| = |z| 。这样的素元叫一个复素元(或复素点)。这样无限素元的集合的描述如下:每个无限素元对应到一个唯一的嵌入σ:K→R,或一对共轭嵌入τ,τ:K→C.实素点素数表示为r1 ,复素点表示为r2,嵌入ķ→C的总数为r1+2r2,(事实上,等于K/ Q的扩张次数:)。算术基本定理说明Z环的乘法结构为:每一个非零整数可以表为唯一的若干素数次幂和±1乘。这对OK的理想的唯一分解对一部分理想正确,不能全正确是因为±1,因为整数1和-1是Z环的可逆元(即单位,两者组成一个乘法群叫单位群,记为Z×,是个2阶循环群)。更普遍的是,在OK的形式下全部素元乘法可逆组成一个乘法群,记为O×,群素元称为OK的单位,这个群比2阶循环群Z×阶大。由狄利克雷单位定理可得:单位群是交换群。更确切的有伽罗瓦模形式:有限循环群即为K的单位群O×。OK单元群的阶大小,OK的格结构,在类数公式可以看出。在素点w对数域K完备化给出了一个完全域。如果赋值是阿基米德赋值,得到R或C,都是完全域。如果非阿基米德赋值,则是有理素元的离散赋值,得到有限扩张Kw / Qp: :这离散赋值域也是一个完全域,且是有限剩余域。局部方法简化了域的算术,能局部研究问题。例如克罗内克韦伯定理,可以轻松地从局部状态进行。局部域的研究背后的哲学,主要是出于几何方法。在代数几何,可通过对极大理想的点集局部化的变量研究入手。而全局信息,可通过局部化综合在一起得出。在代数数论,局部研究问题是主要方法之一,通过在数域代数中对整数环的素元入手,再对分式域研究得出全局信息。理想类群阶的有限性问题。代数数论一个经典结论是:代数数域的理想类群阶有限。
理想类群阶大小叫类数,常记为h。
相关
- 腺病毒科腺病毒科(Adenoviridae)是一种中型大小的病毒,约90-100nm大,是一种无外套膜的二十面体双股DNA病毒,有核衣壳。腺病毒有四属:腺病毒主要感染多种脊椎动物,当中包括人类。腺病毒于195
- 旅游组织商会是指由商人为达到某种目标,通过签署协议,自愿组成的团体或组织。协会是指由个人、单个组织为达到某种目标,通过签署协议,自愿组成的团体或组织。中文“协会”一词蕴涵英文As
- 嗜热嗜热生物,或者多数可被称作嗜热菌,是在相对高的温度下中生存的生物,温度范围在45和122 °C(113和252 °F),是嗜极生物的一类。很多嗜热生物是古细菌。在地球上,嗜热生物可以在很多
- 约瑟夫·布拉克约瑟夫·布拉克(Joseph Black, 1728年4月16日-1799年12月6日)是英国籍的医生和化学家。他重新发现二氧化碳、比热及解说潜热的概念。他也是格拉斯哥大学的医学教授(同时担任化学
- 俄罗斯最高苏维埃俄罗斯最高苏维埃,在1938年—1991年称为俄罗斯苏维埃联邦社会主义共和国最高苏维埃(俄语:Верховный Совет РСФСР),1991年至1993年称俄罗斯联邦最高苏维埃(俄语
- 阿姆斯特丹大学阿姆斯特丹大学(荷兰文:Universiteit van Amsterdam,缩写为 UvA),成立于1632年,坐落在荷兰首都阿姆斯特丹市中心。阿姆斯特丹大学是历史悠久的著名世界百强学府,也是欧洲最大的综合
- 詹姆斯五世詹姆斯五世(James V of Scotland)(1512年4月10日-1542年12月14日),苏格兰斯图亚特王朝第七任君主,詹姆斯四世与妻子英格兰国王亨利七世之长女玛格丽特·都铎之子,1513年至1542年在
- 焦念志焦念志(1962年12月-),山东潍坊人,中国生物海洋学家,厦门大学教授。1991年于青岛海洋大学获博士学位。2011年当选为中国科学院院士。
- 非物质文化遗产非物质文化遗产指的是联合国教科文组织认定的对某地区化传承有重要意义的行为或表现,如括民俗、文化、信仰、传统、知识和语言等各种非物质形式的智慧财产。若是物质形式,则依
- Vitamin D维他命D也称抗佝偻病维他命,是一类脂溶性维他命,属类固醇化合物。在人类所需的维他命中,维他命D非常特殊,是一种激素的前体,而且人一天只要暴露在阳光下10分钟,人体自身即可合成足