首页 >
二刻尺作图
✍ dations ◷ 2025-06-07 12:05:13 #二刻尺作图
二刻尺(希腊语:νεῦσις、英语:neuein)是一种几何作图的工具,是上面有二个刻度的直尺(刻度可以在作图过程中标示),因此可以记录长度。二刻尺在古希腊时期曾经和圆规、(无刻度的)直尺一样是在尺规作图中合法的作图工具。而后来的尺规作图多限定只能使用无刻度的直尺,不允许使用二刻尺。二刻尺介于刻度尺和尺规作图中的尺之间,既不同于日常使用的刻度尺(有许多刻度),也不同于尺规作图中的尺(没有刻度)。二刻尺有两个刻度,使得二刻尺上有某一固定长的线段。尺规作图中的尺,可视为画无限长的直线工具,二刻尺可看作这种尺上任意添加了点A和点B两个点(AB两点长度固定却不确定某一数值)。尺规作图中的尺只能用来将两点连接起来。而二刻尺除了可以将两点连接起来,还有以下用法:假设尺上的两刻度距离为a,有两条线l、m和点P,可以用二刻尺找到一条通过P的直线,使得此直线与直线l和m的两个交点间的距离为a。如图,有两条线l、m和点P。可以将尺与点P对齐,并让其中一个刻度保持在l(图中黄点)上,慢慢转动尺 (允许尺贴著P滑动),直到另一个刻度碰到m(图中蓝点),此线即为所求(图中深蓝色线)。二刻尺可以解出单用直尺和圆规无法解决的问题,例如三等分角和正七边形。基本上,正n边形可以由二刻尺作图建构当n =不过当n =但目前仍然不知道对于以下的n,正n边形能不能二刻尺作图:数学史学家T.L.希思(英语:T. L. Heath)(T. L. Heath)认为古希腊数学家恩诺皮德斯(公元前440年左右)是第一个把圆规和直尺的地位提高的人。这种避免使用二刻尺的理念多少影响了同一时期、同一座岛上的几何学家希俄斯的希波克拉底(英语:Hippocrates of Chios)(Hippocrates of Chios,不是医师希波克拉底)(公元前430年左右)。100年后,欧几里得在其著作中也尽量避免使用二刻尺作图。公元前4世纪,受到柏拉图的理念论影响,尺规作图被分成三个等级。这三个等级分别是:二刻尺被放在第三级是因为它可以解决前两级所不能解决的问题,因此二刻尺被当成解决问题的最终手段,这种简单而有力的作图工具也逐渐被当成不正当的作图工具。希腊数学家亚历山大里亚的帕普斯(Pappus of Alexandria,公元前325年左右)认为:“这是一个不小的错误”。
相关
- 皮肤发紫发绀(Cyanosis,“绀”音“gàn”),或称紫绀、苍蓝症,是因在接近皮肤表面的血管出现脱氧后的血红蛋白,令皮肤或黏膜带青色的症状。根据Lundsgaard和Van Slyke的著作,当去氧血红素的
- 硫3s2 3p42, 8, 6蒸气压第一:999.6 kJ·mol−1 第二:2252 kJ·mol−1 第三:3357 kJ·mol−1 (主条目:硫的同位素硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。
- 细菌性脑膜炎脑膜炎(英语:meningitis)指发生于脑膜的急性炎症,脑膜是包裹大脑和脊髓的保护薄膜。脑膜炎最常见的症状是发热、头痛和颈部僵硬。其他症状还包含精神错乱(英语:mental confusion)或
- 通勤通勤是和制汉语,指从家中往返工作地点的过程。一般来说,通勤在日语中是大众词汇,但在汉语中,通勤是铁路方面的术语。通勤是工业化社会的必然现象。在19世纪以前的城市居民主要步
- SprintSprint Corporation (NYSE:S),译作“斯普林特公司”,前称为Sprint Nextel Corporation。 是一家在美国、波多黎各、美属维尔京群岛运营有线通信与无线通信的控股公司。该公司与
- 体质体质可指:
- 丙醛C2, C3: sp3丙醛是三个碳的醛,分子式为CH3CH2CHO。它是丙酮的同分异构体,室温下为无色液体,略微带有刺激性的水果气味。丙醛主要通过金属催化剂存在下,混合合成气和乙烯,发生加氢
- 托马斯·曼保罗·托马斯·曼(Paul Thomas Mann,1875年6月6日-1955年8月12日), 德国作家,1929年获得诺贝尔文学奖。保罗·托马斯·曼生于德国吕贝克,是商人托马斯·约翰·亨利希·曼的儿子,亨利
- ǂ不送气硬颚搭嘴音(Tenuis palatal click)是一种主要出现于南非的辅音。其中,术语“不送气”(tenuis)又称“无声爆破音”,特指清音、不送气(unaspirated)、未颚音化、未声门化(英语:Glo
- UUPONUUPON 红利点数是以悠游卡为会员载具的红利集点,独家提供悠游卡会员点数服务。只要加入会员并绑定悠游卡,就可以在合作特约商和搭乘大众交通工具用悠游卡消费进行累兑点。建立