二刻尺作图

✍ dations ◷ 2025-12-02 04:01:39 #二刻尺作图
二刻尺(希腊语:νεῦσις、英语:neuein)是一种几何作图的工具,是上面有二个刻度的直尺(刻度可以在作图过程中标示),因此可以记录长度。二刻尺在古希腊时期曾经和圆规、(无刻度的)直尺一样是在尺规作图中合法的作图工具。而后来的尺规作图多限定只能使用无刻度的直尺,不允许使用二刻尺。二刻尺介于刻度尺和尺规作图中的尺之间,既不同于日常使用的刻度尺(有许多刻度),也不同于尺规作图中的尺(没有刻度)。二刻尺有两个刻度,使得二刻尺上有某一固定长的线段。尺规作图中的尺,可视为画无限长的直线工具,二刻尺可看作这种尺上任意添加了点A和点B两个点(AB两点长度固定却不确定某一数值)。尺规作图中的尺只能用来将两点连接起来。而二刻尺除了可以将两点连接起来,还有以下用法:假设尺上的两刻度距离为a,有两条线l、m和点P,可以用二刻尺找到一条通过P的直线,使得此直线与直线l和m的两个交点间的距离为a。如图,有两条线l、m和点P。可以将尺与点P对齐,并让其中一个刻度保持在l(图中黄点)上,慢慢转动尺 (允许尺贴著P滑动),直到另一个刻度碰到m(图中蓝点),此线即为所求(图中深蓝色线)。二刻尺可以解出单用直尺和圆规无法解决的问题,例如三等分角和正七边形。基本上,正n边形可以由二刻尺作图建构当n =不过当n =但目前仍然不知道对于以下的n,正n边形能不能二刻尺作图:数学史学家T.L.希思(英语:T. L. Heath)(T. L. Heath)认为古希腊数学家恩诺皮德斯(公元前440年左右)是第一个把圆规和直尺的地位提高的人。这种避免使用二刻尺的理念多少影响了同一时期、同一座岛上的几何学家希俄斯的希波克拉底(英语:Hippocrates of Chios)(Hippocrates of Chios,不是医师希波克拉底)(公元前430年左右)。100年后,欧几里得在其著作中也尽量避免使用二刻尺作图。公元前4世纪,受到柏拉图的理念论影响,尺规作图被分成三个等级。这三个等级分别是:二刻尺被放在第三级是因为它可以解决前两级所不能解决的问题,因此二刻尺被当成解决问题的最终手段,这种简单而有力的作图工具也逐渐被当成不正当的作图工具。希腊数学家亚历山大里亚的帕普斯(Pappus of Alexandria,公元前325年左右)认为:“这是一个不小的错误”。

相关

  • 生命生命泛指一类具有稳定的物质和能量代谢现象并且能回应刺激、能进行自我复制(繁殖)的半开放物质系统。简单来说,也就是具有生命机制的物体。生命个体一定会经历出生、成长、衰老
  • 吸毒者物质依赖(英语:Substance dependence)或称药物成瘾(drug addiction),指需要服用药物才能使日常生活表现正常的强迫行为。出现物质依赖状况后,若突然停止服用药物,可能出现药物戒断症
  • 知识学知识论是探讨知识的本质、起源和范围的一个哲学分支。目前知识论和认识论之间的关系存在争议,有人认为它们是同一个概念,而也有人认为它们其实是存在一些密切联系的两个不同概
  • 已测序真核生物基因组列表已测序真核生物基因组列表包括所有已知的,可以公开获取已组装、注释和发表的细胞核和细胞器基因组序列的真核生物;基因组草图不包括在内,只有细胞器序列的物种也不包括。1977年
  • 世界政府世界政府(World government )是一个关于可能实现的政治实体的理念,这个政治实体解释并执行国际法。关于这个世界政府的理念有一个必要的条件就是现有的国家要削弱和放弃某些权
  • 有蹄类有蹄类是指几类使用趾尖(一般都有蹄)来支撑身体的哺乳动物。它们共有几个目,当中有奇蹄目和鲸偶蹄目仍然生存。有蹄类是一个支序分类学的分支,或只是一个分类单元仍存有争议,因为
  • 摩顿湾摩顿湾(Moreton Bay)是位于澳大利亚昆士兰州府城布里斯本以东19公里的一处海湾,约形成于6,000年前,乃昆州最重要的海岸资源。摩顿湾的水域是当地人最常亲近的一片天然休闲场所,也
  • 易斯哈格以撒(希伯来语: יִצְחָק‎;阿拉伯语: إسحٰق;英语:Isaac),又译依撒格或易司哈格,是《旧约圣经·创世记》中的人物,亚伯拉罕的嫡子,原配撒拉所生的独生子,以扫和雅各的父亲
  • 布里奇曼珀西·威廉姆斯·布里奇曼(英语:Percy Williams Bridgman,1882年4月21日-1961年8月20日),美国物理学家,因他在高压物理方面的贡献,1946年获得诺贝尔物理学奖。布里奇曼对科学方法及
  • 中国文化与中国的兵《中国文化与中国的兵》是雷海宗的作品,全书分为两篇。雷海宗将中国文化分成三个周期。383年淝水之战前后,中国分为两周,第一周是纯华夏民族创造文化的时期,第二周是北方各少数