超分辨率成像

✍ dations ◷ 2025-11-17 18:05:04 #图像处理,光学,信号处理

超分辨率成像(Super-resolution imaging,缩写SR),是一种提高影片分辨率的技术。在一些称为“光学SR”的SR技术中,系统的衍射极限被超越;而在其他所谓的“几何SR”中,数位感光元件的分辨率因而提高。超分辨率成像技术用于一般图像处理和超高分辨率显微镜。

在2000年以来,小波变换的技术被使用在提高影像的分辨率。

DASR (Demirel-Anbarjafari Super Resolution)是使用离散小波变换(Discrete wavelet transform)来进行超分辨率成像的方法。当时,超分辨率成像通常是以内插影像的像素值来完成,而作者认为,对影像中的高频部分进行内插是造成品质降低的主要理由,因为内插高频部分让物体的边界变得模糊且平滑,于是提出使用离散小波变换的算法来减轻这个问题。

影像可以表示成二维的讯号,经过二维的离散小波变换,可以被分解成四个不同频段的影像,分别是:low-low (LL), low-high (LH), high-low (HL) 和 high-high (HH),各自代表在不同维度是高频或低频,举例来说,LH就是在原影像的第一维(x轴)是低频而在第二维(y轴)是高频的分解后结果。

将原影像分解为LL, LH, HL和HH后,DASR会对高频段的三张影像LH, HL和HH分别做内插,以产生高分辨率的LH, HL和HH。这是由于作者认为,将不同的高频影像各自做内插,能够避免彼此干扰,进而保留更多的高频资讯。DASR不会内插LL,而是内插原图来当作高分辨率的LL,因为原图比LL含有更多资讯。取得四张高分辨率的LL, LH, HL和HH后,DASR将四张影像经过逆离散小波变换(Inversed discrete wavelet transform),来生成最终的成像结果。

DASR当时在 Lena, Elaine, Pepper和Baboon上取得State-of-the-art的结果,并超越传统使用内插和其它使用离散小波变换的方法。

随着神经网络的流行,相关技术也被应用在提高图片分辨率。

SRCNN ( Super-resolution convolution neural network )是一个神经网络,输入是一个低分辨率(视觉上)的图像,而输出是一个高分辨率的图像,这里需要注意的是,在将图像喂进神经网络前,需要先经过一个预处理bicubic interpolation,将原始图片变成跟想要的高分辨率图像一样大小后,再喂进神经网络中。而神经网络做的事情,主要分成三个步骤区块特征抽取与表达(Patch extraction and representation)、非线性对应(non-linear mapping)以及重建(reconstruction)。

这一步就如同一般的CNN ( convolution neural network ),只是没有经过max-pooling,公式如下。

Y {\displaystyle Y} 代表已经经过bicubic interpolation的图像, F 1 ( Y ) {\displaystyle F_{1}(Y)} 则为这层神经网络的输出, W 1 {\displaystyle W_{1}} 代表 n 1 {\displaystyle n_{1}} c × f 1 × f 1 {\displaystyle c\times f_{1}\times f_{1}} 的filter( c {\displaystyle c} 是图像的channel数量,而 f 1 {\displaystyle f_{1}} 则为filter的大小), {\displaystyle \ast } 代表卷积(convolution), B 1 {\displaystyle B_{1}} 是偏移量(bias),最后的 max {\displaystyle \max } 则代表激活函数RELU。

非线性对应,基本上就是持续利用一般CNN的方式将前一步每一块的 n 1 {\displaystyle n_{1}} 维的特征向量,分别转换成 n 2 {\displaystyle n_{2}} 维的特征向量,公式如下。

在重建的步骤中,我们要考虑的是每一个像素所要的值是多少,这个步骤可以想成在多个相关的高维度的特征向量中,取一个平均,很凑巧的,这刚好也很像一般的卷积层(convolution layer),公式如下。

在SRCNN中所采用的差异函数(Loss Function)是简单的平均方根差(Mean Square Error),定义为重建后的相片每一个像素与真正的图片的每一个像素的差异,公式如下。

θ {\displaystyle \theta } 为SRCNN的参数, F ( Y i ; θ ) {\displaystyle F(Y_{i};\theta )} 为给定的SRCNN重建 Y i {\displaystyle Y_{i}} 的图像, X i {\displaystyle X_{i}} 则为真正的高分辨率图像, n {\displaystyle n} 为拿来训练神经网络的图像数量或者是一个batch中所有的图像数量。

这篇论文提供了一个做法,可以应用在图像风格转移(Style Transfer)以及超高分辨率(Super-resolution)。

整个系统由两个神经网络组成,其中一个是图像转移网络 f W {\displaystyle f_{W}} ,另一个则是可以用来定义各种差异的差异网络 ϕ {\displaystyle \phi }

图像转移网络的输入为一张图像,输出也是一张图像,而这个网络的参数以 W {\displaystyle W} 表示。

这个图像转移网络由5个residual block所组成,而所有非residual的convolution layer后面都会接上batch normalization。激活函数(activation function)的部分,除了在最后的输出层(output layer)使用scaled tanh使得输出的数值在0到255之间,其他都是使用RELU。

convolution layer的filter(kernel)的数量上,第一层和最后一层使用 9 × 9 {\displaystyle 9\times 9} 个,其他层则是使用 3 × 3 {\displaystyle 3\times 3} 个。

差异网络定义了各种差异函数(loss function),输入为两张图像,一张来自图像转移网络,一张则是真正的高分辨率影像,输出为一个实数(scalar)。

而这篇论文所使用的差异网络是16层的VGG网络,并事先利用Image Net训练过。差异函数的部分,使用了两个不同于传统简单的差异函数。(CHW代表feature map各个维度的数值)

这个差异函数的设计理念在于,当我们在看两张图片像不像时,我们并不是一个一个像素的比较,而是比较两张图片中的特征像不像。因此,他拿差异网络中某一层的输出,当作一个图片特征值,再以两张图片的特征值的Euclidean Distance当作差异。

除了一般的特征以外,我们也会需要图像转移网络正确的重建颜色、材质等等的内容,因此必须再加上风格重建差异函数。在定义风格重建差异之前,我们先定义Gram矩阵 G j ϕ ( x ) c , c {\displaystyle G_{j}^{\phi }(x)_{c,c'}}

接着差异函数就可以定义为

而一般比较每一个像素差异的差异函数,则可以写为

有了这两个网络后,训练图像转移网络的方法则是最小化各式差异函数的权重和(weighted sum),优化的方法是梯度下降法(Stochastic Gradient Descent(l()是差异函数(loss function)))。

这篇论文在高分辨率图像这个传统问题上,给了一个快速且有效的解法,快速的原因在于,在遇到一张新的图片时,只需要把图像喂进图像转移网络就好(一次forward pass)。而在结果上,也大大的超越了之前的做法(一样使用深度神经网络)SRCNN。

相关

  • 贝尔法斯特坐标:54°35′50″N 5°55′48″W / 54.5973°N 5.9301°W / 54.5973; -5.9301贝尔法斯特(英语:Belfast /ˈbɛlfɑːst, -fæst/;爱尔兰语:Béal Feirste)位于爱尔兰岛东北沿海的
  • 延 清延清(1846年-1917年),字子澄,号小恬、梓臣、铁君,晚号搁笔老人,巴哩克氏,京口驻防蒙古镶白旗人。同治癸酉举人,甲戌进士。后官工部郎中、内阁侍读、翰林院侍读学士等职。延清一生勤奋
  • SMART索诺马-马林地区轨道交通(英语:Sonoma-Marin Area Rail Transit,缩写为"SMART")是美国加利福尼亚旧金山湾区北湾的通勤铁路系统,主要服务索诺马与马林两县。由于车辆引擎故障与单
  • 参与型经济参与型经济(Participatory economics,简称parecon)是一个还在设想阶段的经济体制。该体制通过平等参与来作经济决定,引导一个社会的资源配置和消费。该体制的目标是替代当代资本
  • 伊博语伊博语(Asụsụ Igbo,iɡ͡boː,古语为Ibo),又译作伊格柏语,是一种通行于西非国家尼日利亚的伊博族语言,属于尼日尔-刚果语系的大西洋语支,有主要语言人口1800万。伊博语是一种重视
  • 伍德兰 (加利福尼亚州)伍德兰(英文:Woodland),是位于美国加利福尼亚州优洛县的一座城市,也是该县的首府。建市于1871年2月22日,面积 大约为15.3平方英里 (39.6平方公里)。根据2010年美国人口普查,该市有
  • 魔术师列表本表列出历代和当代职业魔术师。
  • 1944年夏季奥林匹克运动会第十三届夏季奥林匹克运动会(英语:the Games of the XIII Olympiad,法语:les Jeux de la XIIIe Olympiade),原定于1944年在英国伦敦举行。然而因第二次世界大战爆发而停办。第二次
  • 日本建交列表截至2020年日本国已与192个国家建立外交关系,包括191个联合国成员国及科索沃。
  • 五十岚亮太NPBMLB五十岚亮太 (日语平假名:いがらし りょうた,1979年5月28日-),出生于日本北海道留萌市的一位日本职业棒球选手(投手),曾经效力过为美国职棒大联盟纽约洋基多伦多蓝鸟等球队。2