无量纲

✍ dations ◷ 2025-09-06 16:52:15 #无量纲
在量纲分析中,无量纲量,或称无因次量、无维量、无维度量、无维数量、无次元量等,指的是没有量纲的量。它是个单纯的数字,量纲为1。无量纲量在数学、物理学、工程学、经济学以及日常生活中(如数数)被广泛使用。一些广为人知的无量纲量包括圆周率(π)、欧拉常数(e)和黄金分割率(φ)等。与之相对的是有量纲量,拥有诸如长度、面积、时间等单位。无量纲量常写作两个有量纲量之积或比,但其最终的纲量互相消除后会得出无量纲量。比如,应变是量度形变的量,定义为长度差与原先长度之比。但由于两者的量纲均为L(长度),因此相除后得出的量是没有量纲的。白金汉π定理的另一项推论为,如果n个变数之间有某种函数关系,而这些变数中有k个独立的量纲,则可以产生p = n − k个独立的无量纲量。某磁力搅拌器的电功率是被搅拌液体的密度和黏度、搅拌器的直径及搅拌速度的函数。因此这里共有n = 5个变量这n = 5个变量共由以下k = 3个量纲组成:根据该定理,通过组合这n = 5个变量,可以得出p = n − k = 5 − 3 = 2个独立的无量纲量。此例中的这两个无量纲量分别为:下表中所有的量均为无量纲量:一些基本物理常数,如真空中的光速、万有引力常数、普朗克常数和波兹曼常数等等,在适当挑选时间、长度、质量、电荷及温度等单位后,可以归一(数值为1)。这种单位制被称为自然单位制。不过不可能在每一个单位制中都把所有的物理常数归一,剩余的量必须以实验判定。这些剩余的量包括:

相关

  • 胰岛胰岛(兰格尔翰斯岛,德语: Langerhans-Inseln 英语: Islets of Langerhans)在1869年由德国病理学家保罗·兰格尔翰斯(Paul Langerhans)所发现。胰岛是胰脏里的岛状细胞团,由一群分
  • 肌肉(拉丁语:Musculus)是一种能收缩的动物组织,属于软组织,由胚胎的中胚层发育而来。肌肉细胞有收缩纤维,会在细胞间移动,并改变细胞的大小。肌肉分为骨骼肌、心肌和平滑肌三种,其功
  • 世界卫生大会观察员世界卫生大会(法语:Assemblée Mondiale de la Santé,AMS ; WHA; 英语:World Health Assembly,WHA),是世界卫生组织(WHO)的最高权力机构。世界卫生大会每年5月在瑞士日内瓦的万国
  • 谷丙转氨酶谷丙转氨酶(英文:Alanine transaminase,缩写ALT)是一种转氨酶(EC 2.6.1.2,存在于血浆及多种身体组织中,但最常见与肝脏关联。也叫血清谷氨酸丙酮酸转氨酶(英语:serum glutamate pyruv
  • 巴布亚诸语言巴布亚诸语言(英语:Papuan languages)是指在巴布亚新几内亚及邻近地区流通,但不属于南岛语系的多种语言的集合。由于这个语系内有多达6000多种不同的语言,而语言间的差异又很大,有
  • 心理史学心理史学是从心理学角度思考历史人物行为对历史事件影响的规律,作用是研究在历史上发生的重大事件里,背后所引起的心理从而激励后来人心理作用的研究。这种研究从人物精神分析
  • 健康心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学
  • 微颚动物门微颚动物门(学名:Micrognathozoa)是1994年发现的一个动物门。目前只有一种动物淡水颚虫(Limnognathia maerski),由丹麦科学家在格陵兰北部的迪斯科岛地区的泉水里首次发现。它被归
  • 海带目见内文海带目是褐藻纲之下一个目级的海藻分类单元,现时包括有约30个属。 这些海带生长于浅海海洋底下的海藻林:一种类似于陆地上森林的海洋植物群落,估计从中新世(即500到2300万
  • 肯纳威克人肯纳威克人(英语:Kennewick Man)是一具于1996年7月28日出土自美国华盛顿州哥伦比亚河岸肯纳威克城的史前人骨骸。据碳同位素分析,其年龄在距今8500年左右。是有史以来发现最完整