阿波罗尼奥斯问题

✍ dations ◷ 2025-10-22 23:53:12 #平面几何,共形几何

阿波罗尼奥斯问题是一道有名的几何题:“平面上给定三个圆周,如何用尺规作图构造出和这三个已知圆都相切的圆(图1 )?”

佩尔盖(英语:Perga)的阿波罗尼奥斯(Apollonius of Perga,约前262年-约前190年)在其著名作品《论切触》(希腊语:Ἐπαφαί,英译名 Tangencies )里提出并解决了这个问题;虽然作品现已遗失,但这个数学结果已被记载在一份四世纪时亚历山大的帕普斯所写的报告里。

三个给定的圆,一般而言会有八个不同的圆和它们都相切(图2),而在这八个解里,每一个都以不同的方式内切或外切于给定的三个圆。在十六世纪,范罗门用相交的双曲线解决了这个问题,但他的解法并不符合只使用直规的要求。弗朗索瓦·韦达利用问题的极端情况找到这样一种解法:三个圆中的任何一个都可以缩成零半径(一个点),或扩大成半径无限(一条直线)。此方法也被认为是阿波罗尼奥斯所用方法的一个颇为可信的重现。另外,值得一提的是,范罗门的方法后来被艾萨克·牛顿简化了,而且他证明了阿波罗尼奥斯问题等价于另一个问题:寻找一个点,其与三个给定点的距离之差是已知的。此想法在导航和定位系统中有一些应用,比如LORAN(远距离无线电导航系统)。

再后来的数学家引入了代数的方法,即把几何问题变换为代数方程组。这些方法又可以利用阿波罗尼奥斯问题所固有的对称性以得到简化,比如作为解的那些圆周(解圆)一般都成对出现:一个解圆和某已知圆外切的话,相应一定有另一个解圆是内切的(图2)。热尔岗纳(法语:Joseph Diez Gergonne)利用这种对称性提供了一个优美的尺规解法;也有一些数学家使用圆反演等几何变换来简化已知圆的配置。以上这些发展为一些代数方法提供了几何的框架(见李球面几何(英语:Lie sphere geometry)),以及根据已知圆的33种不同的配置来对解圆分类的方法。

阿波罗尼奥斯问题还进一步激发了很多工作。这个问题的三维推广--构造与四个已知球面相切的球面--或者更高维的推广,都有人研究。另外,三个已知圆两两相切的这种配置也引起了关注,例如笛卡儿就给出过已知圆和解圆的半径关系式,即笛卡尔定理(英语:Descartes' theorem)。在这种配置下,如果把问题的解不断地迭代,还能得到所谓“阿波罗尼奥斯垫片(英语:Apollonian gasket)”;这是最早被印刷出来的分形图形,在解析数论中也有它的芳踪(见福特圆(英语:Ford circle)和哈代-李特尔伍德圆法)。

相关

  • 肽(英语:peptide,来自希腊文的“消化”),旧称胜,即胜肽,又称缩氨酸,是天然存在的小生物分子,介于氨基酸和蛋白质之间的物质。由于氨基酸的分子最小,蛋白质最大,而它们则是氨基酸单体组
  • 印度喀拉拉邦柯枝犹太人,又名马拉巴尔犹太人,是生活在现在印度喀拉拉邦的犹太人。他们是印度最古老的犹太人群体,最早可追溯至所罗门王时代。早在12世纪一个来自西班牙图德拉的犹太旅行家提
  • 张伯伦亚瑟·内维尔·张伯伦,FRS(英语:Arthur Neville Chamberlain,1869年3月18日-1940年11月9日),英国保守党政治人物,1937年5月至1940年5月担任英国首相,以其绥靖主义外交政策闻名,并于193
  • 起世因本经《起世经》,又称《起世因本经》,为佛陀解说宇宙形成、发展、组织和灭亡的经书。《起世经》分十二品,包括阎浮洲品、郁单越洲品、转轮圣王品、地狱品、诸龙金翅鸟品、阿修罗品、
  • 肠穿孔肠胃穿孔(Gastrointestinal perforation)又称为肠道破裂(Ruptured bowel),为部分消化道管壁(英语:Gastrointestinal wall)破洞。消化道包含食道、胃、小肠与大肠。。其症状包含严重
  • 西伯利亚高气压西伯利亚高压或蒙古高压,是一典型的半永久性大陆反气旋中心。由于海陆热力性质差异的缘故,在蒙古、西伯利亚一带形成大范围的冷高压,也因此,在冬季时大陆降温较快,海洋降温则较慢
  • 共产党情报局共产党和工人党情报局(英语:Communist Information Bureau,缩写为Cominform),是一个共产主义运动的国际组织。二战结束冷战开始时,为对抗以美国为首的西方国家,在斯大林和铁托的倡
  • 安平 (台南市地名)安平是位在台湾台南市安平区的一个地名,广义的“ 安平”可指称整个安平区,而狭义的“安平”指安平旧聚落一带,古称一鲲鯓、大员:293。本条目所介绍者,以狭义的安平为主。安平以
  • 米尔内 (阿尔汉格尔斯克州)坐标:62°46′N 40°20′E / 62.767°N 40.333°E / 62.767; 40.333米尔内(俄语:Ми́рный)是俄罗斯阿尔汉格尔斯克州的一个城市,位于北德维纳河下游。2002年人口为23,430人
  • 永井裕子永井裕子(ながい ゆうこ,1981年3月3日-),本名同,是日本的演歌歌手,出生于佐贺县佐贺市。所属唱片公司是帝王唱片。再者,初次亮相时(初次亮相之曲)的广告标语是“青春pure”。14岁时的1