不可数集

✍ dations ◷ 2025-10-26 18:17:40 #不可数集
不可数集(英语:uncountable set)是无穷集合中的一种。一个无穷集合和自然数集之间要是不存在一个双射,那么它就是一个不可数集。集合的不可数性与它的基数密切相关:如果一个集合的基数大于自然数的基数,那么它就是不可数的。不可数集有许多等价的定义。一个集合 X {displaystyle X} 是不可数集,当且仅当以下任何一个条件成立:不可数集的最广为人知的例子,是所有实数的集合 R {displaystyle mathbb {R} } ;对角论证法证明了这个集合是不可数的。对角论证法也可以用来证明一些其它的集合是不可数的,例如所有自然数的无穷序列的集合(甚至是所有只由0和1所组成的无穷序列的集合),以及自然数集合的所有子集所组成的集合。 R {displaystyle mathbb {R} } 的基数通常记为 c {displaystyle c} 、 2 ℵ 0 {displaystyle 2^{aleph _{0}}} ,或 ℶ 1 {displaystyle beth _{1}} 。康托尔集是 R {displaystyle mathbb {R} } 的一个不可数子集。它是一个分形,其豪斯多夫维大于零,但小于一( R {displaystyle mathbb {R} } 的维数是一)。这是以下事实的一个例子:如果 R {displaystyle mathbb {R} } 的某个子集有严格大于零的豪斯多夫维,那么它一定是不可数的。另外一个不可数集的例子,是所有从 R {displaystyle mathbb {R} } 到 R {displaystyle mathbb {R} } 的函数的集合。这个集合比 R {displaystyle mathbb {R} } 更“不可数”,因为它的基数是 ℶ 2 {displaystyle beth _{2}} ,它比 ℶ 1 {displaystyle beth _{1}} 还要大。一个更加抽象的例子,是所有可数序数的集合,记为 Ω {displaystyle Omega } 或 ω 1 {displaystyle omega _{1}} 。 Ω {displaystyle Omega } 的基数记为 ℵ 1 {displaystyle aleph _{1}} 。利用选择公理,可以证明 ℵ 1 {displaystyle aleph _{1}} 是最小的不可数基数。于是,实数的基数 ℶ 1 {displaystyle beth _{1}} ,要么等于 ℵ 1 {displaystyle aleph _{1}} ,要么严格比它大。康托尔是第一个提出 ℶ 1 {displaystyle beth _{1}} 是否等于 ℵ 1 {displaystyle aleph _{1}} 的问题的人。在1900年,希尔伯特把这个问题作为他的23个问题之一。 ℵ 1 = ℶ 1 {displaystyle aleph _{1}=beth _{1}} 的陈述现在称为连续统假设,现已知道它独立于集合论的ZF公理(包括选择公理)。

相关

  • T细胞T细胞(英语:T cell、T lymphocyte)是淋巴细胞的一种,在免疫反应中扮演着重要的角色。T是胸腺(thymus)而不是甲状腺(thyroid)的英文缩写。T细胞在骨髓被制造出来之后,在胸腺内进行“新
  • 左氧氟沙星左氧氟沙星(英语:Levofloxacin),常见商品名Levaquin,为一种氟喹诺酮类广谱(英语:broad-spectrum antibiotic)抗细菌药。本品可用于治疗细菌性的鼻窦炎、肺炎、泌尿道感染、慢性前列
  • 抗链球菌溶血素 O 滴度抗链球菌溶血素O试验(Anti-streptolysin O),简称ASO试验,是一种毒素和抗毒素的中和试验,用于疑风湿热或急性肾小球肾炎患者。ASO试验是用链球菌溶血素O作为抗原,检测血清中的ASO值
  • 高基氏体高尔基体(英语:Golgi apparatus)是真核细胞中的一种细胞器。属于细胞的一组膜,专门收集并包裹各种物质,例如酶和激素。这些膜形成像一堆平板的扁囊,部分扁囊常常脱离并移向质膜,一
  • 导管导管是化学实验中常用的一种仪器,通常为中空的玻璃管或塑料管,有各种长短、口径和弯曲形状,在许多实验中都有所应用。导管一般用作气体或者液体流动的通道,与其他实验设备配合使
  • 副黏液病毒亚科副黏液病毒亚科(Paramyxovirinae),属于副黏液病毒科,包括:
  • 新德里新德里(又名纽德里,印地语:नई दिल्ली;英语:New Delhi)是印度的首都。位于印度西北部,座落在恒河支流亚穆纳河(又译:朱木拿河)西岸,东北紧连德里旧城(英语:Old Delhi)(沙贾汉纳巴德)
  • 嗜中性粒细胞减少症嗜中性白血球低下症(Neutropenia 或 Neutropaenia),亦称中性粒细胞减少症,是血液中的一种中性粒细胞(一种白血球细胞)浓度异常低的血液系统疾病,中性粒细胞弥补大多数的循环白血球,
  • 天文学古希腊天文学是指古典时期用希腊语记录的天文学,涵盖古典希腊时期、希腊化时期、希腊罗马时期、古典时代晚期等时期的天文学。它不局限于地理上的希腊或种族上的希腊人,因为在
  • 人造丝嫘萦(léi yíng/ㄌㄟˊ ㄧㄥˊ),英文Rayon或Viscose,又译人造丝,中文译名是发想自中国传说中发明养蚕的嫘祖而来。嫘萦是一种人工制造的纤维。由天然的植物棉加工制造而成,所以属