莱拉·施耐普斯

✍ dations ◷ 2025-08-16 08:52:38 #1961年出生,在世人物,美国数学家,美国女性科学家,哈佛大学校友,巴黎第十一大学校友

莱拉·施耐普斯(Leila Schneps,1961年12月22日-),美国女数学家,居住在法国,供职于法国国家科学研究中心(CNRS)和皮埃尔和玛丽·居里大学朱西厄校区(英语:Jussieu Campus)数学研究所, 她的研究专长为数论。除了发表学术论文,施耐普斯还编有数部教科书,写过一本科普书和多篇科普文章,这些科普作品是关于刑事诉讼中数学的运用和滥用。施耐普斯还以笔名凯瑟琳·萧(Catherine Shaw)发表了一系列数学主题谋杀小说。

施耐普斯于1983年获得哈佛大学-拉德克利夫学院数学、德语和文学的学士学位,然后她赴法国读研究生。1985年,她在巴黎第十一大学奥赛校区完成数学正规博士班(Doctorat de Troisième Cycle)学业, 论文主题是椭圆曲线上p进L函数(英语:p-adic L-function)。 1990年获得数学博士学位, 论文主题是p进L函数(英语:p-adic L-function)和伽罗瓦群, 1993年获得弗朗什-孔泰大学特许任教资格,论文主题是逆伽罗瓦问题(英语:Inverse Galois problem)。

施耐普斯在1990年获得博士学位之前,在法国和德国多所大学做过助教,之后,她在瑞士苏黎世联邦理工学院做博士后。1991年,她在法国国家科学研究中心(CNRS)和弗朗什-孔泰大学获得永久研究职位,至今她仍然在此工作。 在1990年代末,她曾在哈佛大学、普林斯顿高等研究院、美国国家数学科学研究所短期访问研究。

施耐普斯在1980年代末以来,在解析数论各领域有论文发表。她早年的工作是关于进L函数的, 这也是她第一篇学位论文的课题,她随后从事黎曼ζ函数相关领域研究。

1990年代末以来,施耐普斯主要研究伽罗瓦理论,包括伽罗瓦群,几何伽罗瓦群作用和逆伽罗瓦问题, 她在算术几何这些领域的研究得到很高的评价。 进而,她进入了格罗滕迪克-泰希缪勒群方面的研究,并且成为保护亚历山大·格罗滕迪克论著和历史的委员会的成员之一。她近来的研究工作是关于李代数的。

施耐普斯参编数部数论方面的教科书。她还编辑过格罗滕迪克的儿童画(英语:Dessin d'enfant)理论的系列讲义,并在此系列讲义中发表论文一篇,她是一部关于逆伽罗瓦问题的教科书的编者之一,参编了一部关于伽罗瓦群的专著。她还是一部关于场论的专著的共同作者之一,一部关于伽罗瓦-泰希缪勒理论的专著的编者之一。

施耐普斯在2013年出版了一部名为《法庭上的数学:数字在庭审中的运用和滥用》(),这部书是与她同为数学家女儿共同完成的。这部书是写给大众的科普书,以历史上10个官司为例,介绍了数学——尤其是统计学——如何影响诉讼判决的,尤其是数学被误用的时候。本书尽管不是教科书,但书评人认为很适合学生阅读,并登堂入室,启发学生“思考、交流,甚至讨论相关课题”,书评人认为,本书“在内容选取的平衡方面做的很好,既为专家提供足够的数学知识,以验证细节,又不至于把普通读者淹没的细节之中” ,还有书评人认为,本书适合“父母辅导孩子学习数学和法律”。

也有一些书评人对本书提出批评,认为本书过度简化了复杂的诉讼中数学的影响。一位书评人认为,尽管本书对一些庭审中数学的局限性做了适当的描述,但夸大了数学在诉讼中的作用。有书评认为,本书受作者所选取的案件的影响,让人觉得“庭审错误比比皆是”,作者没有充分描述律师、法官的常规和专业的质证。

施耐普斯将多部法语著作译成英文,包括《费马-怀尔斯数学入门》()、《伽罗瓦理论》(),、《一位数学家与他的时代角力》()、《霍奇理论和复代数几何II》()、《p进L函数和p进表示》() 、《重整化方法:临界现象、混沌、分形结构》()。

数学家亚历山大·格罗滕迪克在1991年隐居,并撤销他已发表的论文。十余年后,施耐普斯和皮埃尔·洛查克(Pierre Lochak)在比利牛斯山一小镇找到了隐居的格罗滕迪克,并保持通信。。施耐普斯是“格罗滕迪克圈”(Grothendieck Circle)的创始者之一,格罗滕迪克圈是一个以提供格罗滕迪克圈相关信息为宗旨的团体,创立并运行格罗滕迪克圈网站,收集格罗滕迪克的信息,包括他未发表的论著。施耐普斯还协助翻译格罗滕迪克与让-皮埃尔·塞尔的通信。

2004年,施耐普斯以笔名凯瑟琳·萧(Catherine Shaw)出版了《三体问题,剑桥之谜》()一书,这是一部犯罪小说,故事的人物有1800年代末剑桥研究三体问题的数学家。书名是一双关语,既指数学三体问题,也指三个谋杀案死者。一位数学家评论该书,对用到的数学,介绍得很准确,对数学家的性格和社会的刻画也很到位,但不喜本书的维多利亚文学(英语:Victorian literature)文学风格 。另一位书评人专门联系了作者,并确认凯瑟琳·萧是笔名,作者本人从事数学学术研究,希望匿名发表小说。凯瑟琳·萧是莱拉·施耐普斯的笔名已经为人所知

施耐普斯以凯瑟琳·萧的笔名又发表了成系列的4部历史小说,主人公均为凡妮莎·邓肯(Vanessa Duncan),都是以数学为主题:

施耐普斯以凯瑟琳·萧的笔名曾发表过一本非小说类书,这部书是一本求解数独和数和难题的指导书。

施耐普斯经常在数学会议和研讨会上讲课或做报告。2004年,在帕罗奥图美国数学研究所(英语:American Institute of Mathematics)举行的讲习班上做的报告涉及格罗滕迪克-泰希缪勒群、复曲线、幺半范畴、基本群 和李代数。2012年,她在麻省理工学院讲格罗滕迪克-泰希缪勒理论系列课程。2009年和2013年,她在剑桥牛顿数学科学研究所(英语:Isaac Newton Institute)讲过自己多方面的工作,涉及罗滕迪克-泰希缪勒理论 、李代数和曲线模空间。2014年,她在贝兹学院桑普森讲堂上讲了多Zeta值的数学,另外还以自己的书《法庭上的数学:数字在庭审中的运用和滥用》为基础做了一个通俗的报告。

施耐普斯推动大众对诉讼中正确运用数学和统计学知识的重要性的认识。除了她在这方面写的书,她还在报纸上就此问题发表多篇文章。她还是贝耶斯与国际法协会()的会员。

相关

  • 神经成像神经成像(英语:Neuroimaging)泛指能够直接或间接对神经系统(主要是脑)的功能,结构,和药理学特性进行成像的技术。神经成像是医学,神经科学,和心理学较新的一个领域。根据成像的模式,神
  • 非那甾胺非那斯特莱(英语:Finasteride),或名非那雄胺,别名非那司提,非那甾胺。是预防摄护腺肥大的药物。非那斯特莱会抑制头发毛囊的第二型5α还原酶(type 2 5-alpha reductase),使双氢睾酮(Di
  • 边缘型人格障碍边缘性人格障碍(Borderline Personality Disorder,缩写:BPD)又称情绪不稳定人格障碍 (EUPD),简称边缘人格ICD-10,是一种B型人格疾患。患者出现长期的不稳定行为,容易被周遭认为不正
  • 开路者号开路者号航天飞机(英语:Pathfinder),是一架由钢铁和木材建造的模拟航天飞机,1977年建造于马歇尔航天中心,后运往肯尼迪航天中心用作地面测试之用,实际上不具备飞行能力。由于开路者
  • 望安望安乡是台湾澎湖县的一个乡,也是澎湖县面积最大的离岛位于澎湖本岛南方海上,由19个岛屿所组成,其中6个为有人岛。旧称网垵。历年所属行政区列表望安乡公所是澎湖县望安乡最高
  • 二氧基二氧基盐指含有二氧基阳离子(O2+)的一类不多见的化合物,氧的氧化态为+1/2。该离子由氧气失电子得到:以上的反应需要很大的能量,约为1165kJ/mol,即氧气分子的电离能。O2+离子呈顺磁
  • 平安北道平安北道(朝鲜语:평안북도/平安北道 Pyeong'anbuk do */?)是根据韩国法律划分的一个道,实际上由朝鲜管辖。由于韩国声称其为朝鲜半岛唯一合法的政权,因此在韩国官方出版的地图包
  • 东京工业大学东京工业大学(日:東京工業大学/とうきょうこうぎょうだいがく,英语名称:Tokyo Institute of Technology)为日本东京的一所国立大学,本校区位于东京都目黑区大冈山。该校于1929年创
  • 氦三聚体氦三聚体是一个由三个氦原子组成,靠范德华力键合的化合物。它比氦二聚体更稳定。氦-4原子的三聚体处于埃菲莫夫态。 氦-3推测可以三聚,尽管含有氦-3的氦二聚体在基态完全不稳
  • 全民星攻略《全民星攻略》,是东森电视益智综艺节目,友松娱乐制作,主持人为曾国城及蔡尚桦。东森综合台于2019年2月18日起,周一至周五晚上9点播出。主持人兼馆长曾国城负责引导节目流程,主持